323 research outputs found
Isolation and partial purification of erythromycin from alkaliphilic Streptomyces werraensis isolated from Rajkot, India
AbstractAn alkaliphilic actinomycete, BCI-1, was isolated from soil samples collected from Saurashtra University campus, Gujarat. Isolated strain was identified as Streptomyces werraensis based on morphological, biochemical and phylogenetic analysis. Maximum antibiotic production was obtained in media containing sucrose 2%, Yeast extract 1.5%, and NaCl 2.5% at pH 9.0 for 7 days at 30 °C. Maximum inhibitory compound was produced at pH 9 and at 30 °C. FTIR revealed imine, amine, alkane (CC) of aromatic ring and p-di substituted benzene, whereas HPLC analysis of partially purified compound and library search confirmed 95% peaks matches with erythromycin. Chloroform extracted isolated compound showed MIC values 1 μg/ml against Bacillus subtilis, ≤0.5 μg/ml against Staphylococcus aureus, ≤0.5 μg/ml against Escherichia coli and 2.0 μg/ml against Serretia GSD2 sp., which is more effective in comparison to ehtylacetate and methanol extracted compounds. The study holds significance as only few alkaliphilic actinomycetes have been explored for their antimicrobial potential
UNMANNED AERIAL VEHICLE (UAV)
ABSTRACT Unmanned aerial vehicles (UAV) are the logical successors to modern aircraft and advancements in automated technology. The current generation of UAV's is focused on wartime capabilities and reconnaissance, leaving an existing market untapped by UAV technology: the commercial field. There are hundreds of applications for UAV technology in the civilian market, from emergency response applications and media outlets to communication technicians and horticulturalists. The vehicle can even act as a path guider in normal case and as a fire extinguisher in emergency. This project will help generate interests as well as innovations in the fields of unmanned vehicles, thereby working towards a practical and obtainable solution to save lives and mitigate the risk of property damage
Effects of Renal Denervation vs Sham in Resistant Hypertension after Medication Escalation:Prespecified Analysis at 6 Months of the RADIANCE-HTN TRIO Randomized Clinical Trial
IMPORTANCE: Although early trials of endovascular renal denervation (RDN) for patients with resistant hypertension (RHTN) reported inconsistent results, ultrasound RDN (uRDN) was found to decrease blood pressure (BP) vs sham at 2 months in patients with RHTN taking stable background medications in the Study of the ReCor Medical Paradise System in Clinical Hypertension (RADIANCE-HTN TRIO) trial. OBJECTIVES: To report the prespecified analysis of the persistence of the BP effects and safety of uRDN vs sham at 6 months in conjunction with escalating antihypertensive medications. DESIGN, SETTING, AND PARTICIPANTS: This randomized, sham-controlled, clinical trial with outcome assessors and patients blinded to treatment assignment, enrolled patients from March 11, 2016, to March 13, 2020. This was an international, multicenter study conducted in the US and Europe. Participants with daytime ambulatory BP of 135/85 mm Hg or higher after 4 weeks of single-pill triple-combination treatment (angiotensin-receptor blocker, calcium channel blocker, and thiazide diuretic) with estimated glomerular filtration rate (eGFR) of 40 mL/min/1.73 m(2 )or greater were randomly assigned to uRDN or sham with medications unchanged through 2 months. From 2 to 5 months, if monthly home BP was 135/85 mm Hg or higher, standardized stepped-care antihypertensive treatment starting with aldosterone antagonists was initiated under blinding to treatment assignment. INTERVENTIONS: uRDN vs sham procedure in conjunction with added medications to target BP control. MAIN OUTCOMES AND MEASURES: Six-month change in medications, change in daytime ambulatory systolic BP, change in home systolic BP adjusted for baseline BP and medications, and safety. RESULTS: A total of 65 of 69 participants in the uRDN group and 64 of 67 participants in the sham group (mean [SD] age, 52.4 [8.3] years; 104 male [80.6%]) with a mean (SD) eGFR of 81.5 (22.8) mL/min/1.73 m(2) had 6-month daytime ambulatory BP measurements. Fewer medications were added in the uRDN group (mean [SD], 0.7 [1.0] medications) vs sham (mean [SD], 1.1 [1.1] medications; P = .045) and fewer patients in the uRDN group received aldosterone antagonists at 6 months (26 of 65 [40.0%] vs 39 of 64 [60.9%]; P = .02). Despite less intensive standardized stepped-care antihypertensive treatment, mean (SD) daytime ambulatory BP at 6 months was 138.3 (15.1) mm Hg with uRDN vs 139.0 (14.3) mm Hg with sham (additional decreases of −2.4 [16.6] vs −7.0 [16.7] mm Hg from month 2, respectively), whereas home SBP was lowered to a greater extent with uRDN by 4.3 mm Hg (95% CI, 0.5-8.1 mm Hg; P = .03) in a mixed model adjusting for baseline and number of medications. Adverse events were infrequent and similar between groups. CONCLUSIONS AND RELEVANCE: In this study, in patients with RHTN initially randomly assigned to uRDN or a sham procedure and who had persistent elevation of BP at 2 months after the procedure, standardized stepped-care antihypertensive treatment escalation resulted in similar BP reduction in both groups at 6 months, with fewer additional medications required in the uRDN group. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT0264942
A 63 element 1.75 dimensional ultrasound phased array for the treatment of benign prostatic hyperplasia
BACKGROUND: Prostate cancer and benign prostatic hyperplasia are very common diseases in older American men, thus having a reliable treatment modality for both diseases is of great importance. The currently used treating options, mainly surgical ones, have numerous complications, which include the many side effects that accompany such procedures, besides the invasive nature of such techniques. Focused ultrasound is a relatively new treating modality that is showing promising results in treating prostate cancer and benign prostatic hyperplasia. Thus this technique is gaining more attention in the past decade as a non-invasive method to treat both diseases. METHODS: In this paper, the design, construction and evaluation of a 1.75 dimensional ultrasound phased array to be used for treating prostate cancer and benign prostatic hyperplasia is presented. With this array, the position of the focus can be controlled by changing the electrical power and phase to the individual elements for electronically focusing and steering in a three dimensional volume. The array was designed with a maximum steering angle of ± 13.5° in the transverse direction and a maximum depth of penetration of 11 cm, which allows the treatment of large prostates. The transducer piezoelectric ceramic, matching layers and cable impedance have been designed for maximum power transfer to tissue. RESULTS: To verify the capability of the transducer for focusing and steering, exposimetry was performed and the results correlated well with the calculated field. Ex vivo experiments using bovine tissue were performed with various lesion sizes and indicated the capability of the transducer to ablate tissue using short sonications. CONCLUSION: A 1.75 dimensional array, that overcame the drawbacks associated with one-dimensional arrays, has been designed, built and successfully tested. Design issues, such as cable and ceramic capacitances, were taken into account when designing this array. The final prototype overcame also the problem of generating grating lobes at unwanted locations by tapering the array elements
Winnowing DNA for Rare Sequences: Highly Specific Sequence and Methylation Based Enrichment
Rare mutations in cell populations are known to be hallmarks of many diseases and cancers. Similarly, differential DNA methylation patterns arise in rare cell populations with diagnostic potential such as fetal cells circulating in maternal blood. Unfortunately, the frequency of alleles with diagnostic potential, relative to wild-type background sequence, is often well below the frequency of errors in currently available methods for sequence analysis, including very high throughput DNA sequencing. We demonstrate a DNA preparation and purification method that through non-linear electrophoretic separation in media containing oligonucleotide probes, achieves 10,000 fold enrichment of target DNA with single nucleotide specificity, and 100 fold enrichment of unmodified methylated DNA differing from the background by the methylation of a single cytosine residue
The HIV-1 Nef protein binds argonaute-2 and functions as a viral suppressor of RNA interference
The HIV-1 accessory protein Nef is an important virulence factor. It associates with cellular membranes and modulates the endocytic machinery and signaling pathways. Nef also increases the proliferation of multivesicular bodies (MVBs), which are sites for virus assembly and budding in macrophages. The RNA interference (RNAi) pathway proteins Ago2 and GW182 localize to MVBs, suggesting these to be sites for assembly and turnover of the miRNA-induced silencing complex (miRISC). While RNAi affects HIV replication, it is not clear if the virus encodes a suppressor activity to overcome this innate host response. Here we show that Nef colocalizes with MVBs and binds Ago2 through two highly conserved Glycine-Tryptophan (GW) motifs, mutations in which abolish Nef binding to Ago2 and reduce virus yield and infectivity. Nef also inhibits the slicing activity of Ago2 and disturbs the sorting of GW182 into exosomes resulting in the suppression of miRNA-induced silencing. Thus, besides its other activities, the HIV-1 Nef protein is also proposed to function as a viral suppressor of RNAi (VSR)
Automated cardiovascular magnetic resonance image analysis with fully convolutional networks
Background: Cardiovascular magnetic resonance (CMR) imaging is a standard imaging modality for assessing cardiovascular diseases (CVDs), the leading cause of death globally. CMR enables accurate quantification of the cardiac chamber volume, ejection fraction and myocardial mass, providing information for diagnosis and monitoring of CVDs. However, for years, clinicians have been relying on manual approaches for CMR image analysis, which is time consuming and prone to subjective errors. It is a major clinical challenge to automatically derive quantitative and clinically relevant information from CMR images.
Methods: Deep neural networks have shown a great potential in image pattern recognition and segmentation for a variety of tasks. Here we demonstrate an automated analysis method for CMR images, which is based on a fully convolutional network (FCN). The network is trained and evaluated on a large-scale dataset from the UK Biobank, consisting of 4,875 subjects with 93,500 pixelwise annotated images. The performance of the method has been evaluated using a number of technical metrics, including the Dice metric, mean contour distance and Hausdorff distance, as well as clinically relevant measures, including left ventricle (LV) end-diastolic volume (LVEDV) and end-systolic volume (LVESV), LV mass (LVM); right ventricle (RV) end-diastolic volume (RVEDV) and end-systolic volume (RVESV).
Results: By combining FCN with a large-scale annotated dataset, the proposed automated method achieves a high performance in segmenting the LV and RV on short-axis CMR images and the left atrium (LA) and right atrium (RA) on long-axis CMR images. On a short-axis image test set of 600 subjects, it achieves an average Dice metric of 0.94 for the LV cavity, 0.88 for the LV myocardium and 0.90 for the RV cavity. The mean absolute difference between automated measurement and manual measurement was 6.1 mL for LVEDV, 5.3 mL for LVESV, 6.9 gram for LVM, 8.5 mL for RVEDV and 7.2 mL for RVESV. On long-axis image test sets, the average Dice metric was 0.93 for the LA cavity (2-chamber view), 0.95 for the LA cavity (4-chamber view) and 0.96 for the RA cavity (4-chamber view). The performance is comparable to human inter-observer variability.
Conclusions: We show that an automated method achieves a performance on par with human experts in analysing CMR images and deriving clinically relevant measures
Co-evolution, opportunity seeking and institutional change: Entrepreneurship and the Indian telecommunications industry 1923-2009
"This is an Author's Original Manuscript of an article submitted for consideration in Business History [copyright Taylor & Francis]; Business History is available online at http://www.tandfonline.com/." 10.1080/00076791.2012.687538In this paper, we demonstrate the importance for entrepreneurship of historical contexts and processes, and the co-evolution of institutions, practices, discourses and cultural norms. Drawing on discourse and institutional theories, we develop a model of the entrepreneurial field, and apply this in analysing the rise to global prominence of the Indian telecommunications industry. We draw on entrepreneurial life histories to show how various discourses and discursive processes ultimately worked to generate change and the creation of new business opportunities. We propose that entrepreneurship involves more than individual acts of business creation, but also implies collective endeavours to shape the future direction of the entrepreneurial field
Let’s not forget tautomers
A compound exhibits tautomerism if it can be represented by two structures that are related by an intramolecular movement of hydrogen from one atom to another. The different tautomers of a molecule usually have different molecular fingerprints, hydrophobicities and pKa’s as well as different 3D shape and electrostatic properties; additionally, proteins frequently preferentially bind a tautomer that is present in low abundance in water. As a result, the proper treatment of molecules that can tautomerize, ~25% of a database, is a challenge for every aspect of computer-aided molecular design. Library design that focuses on molecular similarity or diversity might inadvertently include similar molecules that happen to be encoded as different tautomers. Physical property measurements might not establish the properties of individual tautomers with the result that algorithms based on these measurements may be less accurate for molecules that can tautomerize—this problem influences the accuracy of filtering for library design and also traditional QSAR. Any 2D or 3D QSAR analysis must involve the decision of if or how to adjust the observed Ki or IC50 for the tautomerization equilibria. QSARs and recursive partitioning methods also involve the decision as to which tautomer(s) to use to calculate the molecular descriptors. Docking virtual screening must involve the decision as to which tautomers to include in the docking and how to account for tautomerization in the scoring. All of these decisions are more difficult because there is no extensive database of measured tautomeric ratios in both water and non-aqueous solvents and there is no consensus as to the best computational method to calculate tautomeric ratios in different environments
A Re-Examination of Global Suppression of RNA Interference by HIV-1
The nature of the interaction between replicating HIV-1 and the cellular RNAi pathway has been controversial, but it is clear that it can be complex and multifaceted. It has been proposed that the interaction is bi-directional, whereby cellular silencing pathways can restrict HIV-1 replication, and in turn, HIV-1 can suppress silencing pathways. Overall suppression of RNAi has been suggested to occur via direct binding and inhibition of Dicer by the HIV-1 Tat protein or through sequestration of TRBP, a Dicer co-factor, by the structured TAR element of HIV-1 transcripts. The role of Tat as an inhibitor of Dicer has been questioned and our results support and extend the conclusion that Tat does not inhibit RNAi that is mediated by either exogenous or endogenous miRNAs. Similarly, we find no suppression of silencing pathways in cells with replicating virus, suggesting that viral products such as the TAR RNA elements also do not reduce the efficacy of cellular RNA silencing. However, knockdown of Dicer does allow increased viral replication and this occurs at a post-transcriptional level. These results support the idea that although individual miRNAs can act to restrict HIV-1 replication, the virus does not counter these effects through a global suppression of RNAi synthesis or processing
- …