7,602 research outputs found
Dynamics of spinning test particles in Kerr spacetime
We investigate the dynamics of relativistic spinning test particles in the spacetime of a rotating black hole using the Papapetrou equations. We use the method of Lyapunov exponents to determine whether the orbits exhibit sensitive dependence on initial conditions, a signature of chaos. In the case of maximally spinning equal-mass binaries (a limiting case that violates the test-particle approximation) we find unambiguous positive Lyapunov exponents that come in pairs ± lambda, a characteristic of Hamiltonian dynamical systems. We find no evidence for nonvanishing Lyapunov exponents for physically realistic spin parameters, which suggests that chaos may not manifest itself in the gravitational radiation of extreme mass-ratio binary black-hole inspirals (as detectable, for example, by LISA, the Laser Interferometer Space Antenna)
Bacterial Hsp70 resolves misfolded states and accelerates productive folding of a multi-domain protein
The ATP-dependent Hsp70 chaperones (DnaK in E. coli) mediate protein folding in cooperation with J proteins and nucleotide exchange factors (E. coli DnaJ and GrpE, respectively). The Hsp70 system prevents protein aggregation and increases folding yields. Whether it also enhances the rate of folding remains unclear. Here we show that DnaK/DnaJ/GrpE accelerate the folding of the multi-domain protein firefly luciferase (FLuc) 20-fold over the rate of spontaneous folding measured in the absence of aggregation. Analysis by single-pair FRET and hydrogen/deuterium exchange identified inter-domain misfolding as the cause of slow folding. DnaK binding expands the misfolded region and thereby resolves the kinetically-trapped intermediates, with folding occurring upon GrpE-mediated release. In each round of release DnaK commits a fraction of FLuc to fast folding, circumventing misfolding. We suggest that by resolving misfolding and accelerating productive folding, the bacterial Hsp70 system can maintain proteins in their native states under otherwise denaturing stress conditions. The Hsp70 system prevents protein aggregation and increases folding yields, but it is unknown whether it also enhances the rate of folding. Here the authors combine refolding assays, FRET and hydrogen/deuterium exchange-mass spectrometry measurements to study the folding of firefly luciferase and find that the bacterial Hsp70 actively promotes the folding of this multi-domain protein
The dynamics of precessing binary black holes using the post-Newtonian approximation
We investigate the (conservative) dynamics of binary black holes using the
Hamiltonian formulation of the post-Newtonian (PN) equations of motion. The
Hamiltonian we use includes spin-orbit coupling, spin-spin coupling, and mass
monopole/spin-induced quadrupole interaction terms. In the case of both
quasi-circular and eccentric orbits, we search for the presence of chaos (using
the method of Lyapunov exponents) for a large variety of initial conditions.
For quasi-circular orbits, we find no chaotic behavior for black holes with
total mass 10 - 40 solar masses when initially at a separation corresponding to
a Newtonian gravitational-wave frequency less than 150 Hz. Only for rather
small initial radial distances, for which spin-spin induced oscillations in the
radial separation are rather important, do we find chaotic solutions, and even
then they are rare. Moreover, these chaotic quasi-circular orbits are of
questionable astrophysical significance, since they originate from direct
parametrization of the equations of motion rather than from widely separated
binaries evolving to small separations under gravitational radiation reaction.
In the case of highly eccentric orbits, which for ground-based interferometers
are not astrophysically favored, we again find chaotic solutions, but only at
pericenters so small that higher order PN corrections, especially higher spin
PN corrections, should also be taken into account.Comment: 18 pages, 26 figure
A survey of spinning test particle orbits in Kerr spacetime
We investigate the dynamics of the Papapetrou equations in Kerr spacetime.
These equations provide a model for the motion of a relativistic spinning test
particle orbiting a rotating (Kerr) black hole. We perform a thorough parameter
space search for signs of chaotic dynamics by calculating the Lyapunov
exponents for a large variety of initial conditions. We find that the
Papapetrou equations admit many chaotic solutions, with the strongest chaos
occurring in the case of eccentric orbits with pericenters close to the limit
of stability against plunge into a maximally spinning Kerr black hole. Despite
the presence of these chaotic solutions, we show that physically realistic
solutions to the Papapetrou equations are not chaotic; in all cases, the
chaotic solutions either do not correspond to realistic astrophysical systems,
or involve a breakdown of the test-particle approximation leading to the
Papapetrou equations (or both). As a result, the gravitational radiation from
bodies spiraling into much more massive black holes (as detectable, for
example, by LISA, the Laser Interferometer Space Antenna) should not exhibit
any signs of chaos.Comment: Submitted to Phys. Rev. D. Follow-up to gr-qc/0210042. Figures are
low-resolution in order to satisfy archive size constraints; a
high-resolution version is available at http://www.michaelhartl.com/papers
Novel Method to Process Cystic Fibrosis Sputum for Determination of Oxidative State
Background: Induced sputum is the most commonly used method to analyze airway inflammation in cystic fibrosis (CF) patients ex vivo. Due to the complex matrix of the sample material, precise and reliable analysis of sputum constituents depends critically on preanalytical issues. Objectives: Here we compared the commonly used method for sputum processing by dithiothreitol (DTT) with a novel mechanical method in regard to basal cellular parameters, neutrophil markers and glutathione (GSH) levels. Methods: Sputum samples from CF patients were processed in parallel with or without the use of DTT. The key improvement of the mechanical method was the processing in many very small aliquots. Cellular and humoral markers were assessed and compared according to Bland-Altman. Results: Total cell count, cell viability, differential cell count, neutrophil elastase levels and flow cytometrically analyzed neutrophil markers (CD63, CD11b, DHR) did not differ between the two methods. Intracellular and extracellular GSH levels were significantly higher in DTT-treated samples (p = 0.002). Conclusion: The mechanical sputum-processing method presented had a similar yield of cells and fluids as the conventional DTT method and the advantage of omitting the introduction of reducing agents. This method allows a more reliable analysis of redox-dependent airway inflammation in sputum cells and fluid from CF patients than methods utilizing DTT. Copyright (C) 2009 S. Karger AG, Base
Recommended from our members
Solvent and ligand substitution effects on electrocatalytic reduction of CO2 with [Mo(CO)4(x,xʹ-dimethyl-2,2′-bipyridine)] (x = 4-6) enhanced at a gold cathodic surface
A series of molybdenum tetracarbonyl complexes with dimethyl‐substituted 2,2′‐bipyridine (dmbipy) ligands were investigated by cyclic voltammetry (CV) combined with infra‐red spectroelectrochemistry (IR‐SEC) in tetrahydrofuran (THF) and N‐methyl‐2‐pyrrolidone (NMP) to explore their potential in a reduced state to trigger electrocatalytic CO2 reduction to CO. Addressed is their ability to take advantage of a low‐energy, CO‐dissociation two‐electron ECE pathway available only at an Au cathode. A comparison is made with the reference complex bearing unsubstituted 2,2ʹ‐bipyridine (bipy). The methyl substitution in the 6,6ʹ‐positions has a large positive impact on the catalytic efficiency. This behaviour is ascribed to the advantageous positioning of the steric bulk of the methyl groups, which further facilitates CO dissociation from the 1e‐ reduced parent radical anion. In the contrary, the substitution in the 4,4′‐positions appears to have a negative impact on the catalytic performance, exerting a strong stabilizing effect on the π‐accepting CO ligands and, in THF, preventing exploitation of the low‐energy dissociative pathway
General-Relativistic Curvature of Pulsar Vortex Structure
The motion of a neutron superfluid condensate in a pulsar is studied. Several
theorems of general-relativistic hydrodynamics are proved for a superfluid. The
average density distribution of vortex lines in pulsars and their
general-relativistic curvature are derived.Comment: 18 pages, 1 figure
Impact of the dicyanomethylene substitution position on the cyclophane macrocycle formation in carbazole-based biradicals
π-Conjugated biradical compounds, featuring unique unsaturated valences and radical centers in the ground state, are fundamentally important for understanding the nature of chemical bonds and have potential applications in material science. [1] Recently, it has been demonstrated that several -conjugated mono- and biradicals systems form long strain -bonds between two unpaired electrons resulting in macrocyclic or staircase oligomers or polymers by self-assembly processes. [2] Therefore, these materials are potential building blocks for dynamic covalent chemistry (DCC) since the aggregates can be formed or broken upon soft external stimuli. For instance, 2,7-dicyanomethylene-9-(2-ethylhexyl)carbazole biradical (p-Cz-alkyl in Figure 1) reversibly converts upon soft stimuli (temperature, pressure, light) to a cyclophane tetramer as a result from the formation (or bond cleavage) of long C-C single bonds.[3] Here, we present an experimental and theoretical study in order to investigate how the N-substitution and the change from para- to meta-dicyanomethylene substitution on carbazole-based biradicals affects their biradical character and thus, their tendency to act as useful motifs for DCC (see Figure 1).Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec
- …
