357 research outputs found

    Scattering-based nonlinear macromodels of high-speed differential drivers

    Get PDF
    This paper introduces a scattering-based nonlinear macromodeling framework for high-speed differential drivers. Using an industrial test case, we show that the proposed scattering formulation enables more accurate and robust model identification with respect to standard voltage-current representations. The combination of proposed driver models with a Waveform Relaxation solver allows accurate and efficient transient channel simulation, including nonlinear and dynamic termination effect

    Macromodeling strategy for digital devices and interconnects

    Get PDF
    International audienceThis paper proposes a macromodeling approach for the simulation of digital interconnected systems. Such an approach is based on a set of macromodels describing IC ports, IC packages and multiconductor interconnect structures in standard circuit simulators, like SPICE. We illustrate the features of the macromodels and we demonstrate the proposed approach on a realistic simulation problem

    Complete chloroplast genome sequence of Holoparasite Cistanche Deserticola (Orobanchaceae) reveals gene loss and horizontal gene transfer from Its host Haloxylon Ammodendron (Chenopodiaceae)

    Get PDF
    The central function of chloroplasts is to carry out photosynthesis, and its gene content and structure are highly conserved across land plants. Parasitic plants, which have reduced photosynthetic ability, suffer gene losses from the chloroplast (cp) genome accompanied by the relaxation of selective constraints. Compared with the rapid rise in the number of cp genome sequences of photosynthetic organisms, there are limited data sets from parasitic plants. The authors report the complete sequence of the cp genome of Cistanche deserticola, a holoparasitic desert species belonging to the family Orobanchaceae

    Macromodel-Based Iterative Solvers for Simulation of High-Speed Links With Nonlinear Terminations

    Get PDF
    Data transmission on high-speed channels may be affected by several undesired effects, including coupling from nearby interconnects, dispersion, losses, signal reflections from terminations and from internal discontinuities, and nonlinear/dynamic effects of drivers and receivers. The latter are often neglected, leading to very fast solvers, whose results may however be questionable when driver/receiver nonlinearities are important. This paper presents a framework for the transient analysis of complex high-speed channels with arbitrary nonlinear termination circuits. The approach is based on decoupling channel and terminations through a scattering-based Waveform Relaxation (WR) formulation. The channels are here cast as delay-rational macromodels, which are solved in discrete time domain through fast delayed recursive convolutions. The terminations can be either arbitrary circuits, solved by SPICE, or nonlinear behavioral macromodels, which are here formulated in discrete-time scattering representations. In order to overcome the known convergence issues of standard WR methods, we apply here more general iterative solution schemes, such as GMRES and BiCGSTAB, integrated into inexact Newton iterations, obtaining a set of numerical schemes with guaranteed convergence. The excellent performance of the proposed approach is illustrated on a large set of benchmarks

    A Macromodeling-Based Hybrid Method for the Computation of Transient Electromagnetic Fields Scattered by Nonlinearly Loaded Metal Structures

    Get PDF
    In this article, we present a hybrid numerical scheme to compute the transient electromagnetic fields scattered by a metallic structure loaded with lumped nonlinear loads. The proposed scheme is based on three successive steps. First, the field coupling problem to the structure with the nonlinear loads removed is solved in the frequency domain using a method-of-moments (MoM) formulation. The unloaded structure is thus characterized as a generalized multiport Thevenin equivalent, whose components are represented as time-domain operators by performing a set of rational approximations followed by closed-form Laplace transform inversion. Transient port voltages and currents in the presence of nonlinear loads are then computed using a standard circuit solver. As a last step, the substitution theorem is used to solve the radiation problem again in the frequency domain using a MoM solver, the results of which are then translated into the time domain by means of rational approximations and recursive convolution operations. The proposed method enables an accurate and efficient evaluation of the transient nonlinearly scattered fields by the loaded structure, with a good potential for scalability to large-scale high-complexity nonlinear shields. Extensive validations are provided to demonstrate the accuracy of the proposed method, which is here applied to the characterization of energy-selective shielding for protection of sensitive devices from high-intensity radiated fields

    High genetic diversity at the extreme range edge: nucleotide variation at nuclear loci in Scots pine (Pinus sylvestris L.) in Scotland

    Get PDF
    Nucleotide polymorphism at 12 nuclear loci was studied in Scots pine populations across an environmental gradient in Scotland, to evaluate the impacts of demographic history and selection on genetic diversity. At eight loci, diversity patterns were compared between Scottish and continental European populations. At these loci, a similar level of diversity (θsil=~0.01) was found in Scottish vs mainland European populations, contrary to expectations for recent colonization, however, less rapid decay of linkage disequilibrium was observed in the former (ρ=0.0086±0.0009, ρ=0.0245±0.0022, respectively). Scottish populations also showed a deficit of rare nucleotide variants (multi-locus Tajima's D=0.316 vs D=−0.379) and differed significantly from mainland populations in allelic frequency and/or haplotype structure at several loci. Within Scotland, western populations showed slightly reduced nucleotide diversity (πtot=0.0068) compared with those from the south and east (0.0079 and 0.0083, respectively) and about three times higher recombination to diversity ratio (ρ/θ=0.71 vs 0.15 and 0.18, respectively). By comparison with results from coalescent simulations, the observed allelic frequency spectrum in the western populations was compatible with a relatively recent bottleneck (0.00175 × 4Ne generations) that reduced the population to about 2% of the present size. However, heterogeneity in the allelic frequency distribution among geographical regions in Scotland suggests that subsequent admixture of populations with different demographic histories may also have played a role
    corecore