4,877 research outputs found
Physical implementation of holonomic quantum computation in decoherence-free subspaces with trapped ions
We propose a feasible scheme to achieve holonomic quantum computation in a
decoherence-free subspace (DFS) with trapped ions. By the application of
appropriate bichromatic laser fields on the designated ions, we are able to
construct two noncommutable single-qubit gates and one controlled-phase gate
using the holonomic scenario in the encoded DFS.Comment: 4 pages, 3 figures. To appear in Phys. Rev. A 74 (2006
Investigation of possibilities for solar powered high energy lasers in space
The feasibility of solar powered high energy lasers in space has been studied. Preliminary analysis indicates that both direct and indirect pumping methods lead to high energy lasers having interesting efficiencies and capabilities. Many topics for further research have been identified
Loss-Induced Limits to Phase Measurement Precision with Maximally Entangled States
The presence of loss limits the precision of an approach to phase measurement
using maximally entangled states, also referred to as NOON states. A
calculation using a simple beam-splitter model of loss shows that, for all
nonzero values L of the loss, phase measurement precision degrades with
increasing number N of entangled photons for N sufficiently large. For L above
a critical value of approximately 0.785, phase measurement precision degrades
with increasing N for all values of N. For L near zero, phase measurement
precision improves with increasing N down to a limiting precision of
approximately 1.018 L radians, attained at N approximately equal to 2.218/L,
and degrades as N increases beyond this value. Phase measurement precision with
multiple measurements and a fixed total number of photons N_T is also examined.
For L above a critical value of approximately 0.586, the ratio of phase
measurement precision attainable with NOON states to that attainable by
conventional methods using unentangled coherent states degrades with increasing
N, the number of entangled photons employed in a single measurement, for all
values of N. For L near zero this ratio is optimized by using approximately
N=1.279/L entangled photons in each measurement, yielding a precision of
approximately 1.340 sqrt(L/N_T) radians.Comment: Additional references include
Jaynes Cummings treatment of superconducting resonators with dielectric loss due to two-level systems
We perform a quantum mechanical analysis of superconducting resonators
subject to dielectric loss arising from charged two-level systems. We present
numerical and analytical descriptions of the dynamics of energy decay from the
resonator within the Jaynes-Cummings model. Our analysis allows us to
distinguish the strong and weak coupling regimes of the model and to describe
within each regime cases where the two-level system is unsaturated or
saturated. We find that the quantum theory agrees with the classical model for
weak coupling. However, for strong coupling the quantum theory predicts lower
loss than the classical theory in the unsaturated regime. Also, in contrast to
the classical theory, the photon number at which saturation occurs in the
strong coupling quantum theory is independent of the coupling between the
resonator and the two-level system.Comment: 9 pages, 8 figure
Switching the sign of photon induced exchange interactions in semiconductor microcavities with finite quality factors
We investigate coupling of localized spins in a semiconductor quantum dot
embedded in a microcavity with a finite quality factor. The lowest cavity mode
and the quantum dot exciton are coupled forming a polariton, whereas excitons
interact with localized spins via exchange. The finite quality of the cavity Q
is incorporated in the model Hamiltonian by adding an imaginary part to the
photon frequency. The Hamiltonian, which treats photons, spins and excitons
quantum mechanically, is solved exactly. Results for a single polariton clearly
demonstrate the existence of a resonance, sharper as the temperature decreases,
that shows up as an abrupt change between ferromagnetic and antiferromagnetic
indirect anisotropic exchange interaction between localized spins. The origin
of this spin-switching finite-quality-factor effect is discussed in detail
remarking on its dependence on model parameters, i.e., light-matter coupling,
exchange interaction between impurities, detuning and quality factor. For
parameters corresponding to the case of a (Cd,Mn)Te quantum dot, the resonance
shows up for Q around 70 and detuning around 10 meV. In addition, we show that,
for such a quantum dot, and the best cavities actually available (quality
factors better than 200) the exchange interaction is scarcely affected.Comment: 7 figures, submitted to PR
How has the relationship between parental education and child outcomes changed in Australia since the 1980s?
Published version of the paper reproduced here with permission from the publisherThis paper examines how the relationship between parents’ educational
achievement (a marker of their socio‑economic status) and children’s early
developmental outcomes has evolved in Australia since the early 1980s.
The specific focus of this paper is whether the gradient in children’s early
developmental outcomes by parents’ education has changed since the
1980s. A comparative analysis of two surveys is undertaken that follows
Australian cohorts of children through their early years – the Australian
Temperament Project (following children born in Victoria in the early 1980s)
and the Longitudinal Study of Australian Children (following a representative
sample of children born in Australia in 1999). The analysis shows that the
relationship between parental education and children’s early developmental
outcomes does not in general appear to have changed greatly over the
years. The gradient associated with behaviour difficulties, persistence in
behaviour difficulties over time, and in reading skills has either remained the
same or strengthened somewhat, while the gradient associated with social
skills has weakened. The paper concludes with a discussion of issues that
might explain these trends
Unitary and nonunitary approaches in quantum field theory
We use a simplified essential state model to compare two quantum field theoretical approaches to study the creation of electron-positron pairs from the vacuum. In the unitary approach the system is characterized by a state with different numbers of particles that is described by occupation numbers and evolves with conserved norm. The nonunitary approach can predict the evolution of wave functions and density operators with a fixed number of particles but time-dependent norms. As an example to illustrate the differences between both approaches, we examine the degree of entanglement for the Klein paradox, which describes the creation of an electron-positron pair from vacuum in the presence of an initial electron. We demonstrate how the Pauli blocking by the initial electron comes at the expense of a gain in entanglement of this electron with the created electron as well as with the created positron
Generating entanglement of photon-number states with coherent light via cross-Kerr nonlinearity
We propose a scheme for generating entangled states of light fields. This
scheme only requires the cross-Kerr nonlinear interaction between coherent
light-beams, followed by a homodyne detection. Therefore, this scheme is within
the reach of current technology. We study in detail the generation of the
entangled states between two modes, and that among three modes. In addition to
the Bell states between two modes and the W states among three modes, we find
plentiful new kinds of entangled states. Finally, the scheme can be extend to
generate the entangled states among more than three modes.Comment: 2 figure
Beam splitting and Hong-Ou-Mandel interference for stored light
Storing and release of a quantum light pulse in a medium of atoms in the
tripod configuration are studied. Two complementary sets of control fields are
defined, which lead to independent and complete photon release at two stages.
The system constitutes a new kind of a flexible beam splitter in which the
input and output ports concern photons of the same direction but well separated
in time. A new version of Hong-Ou-Mandel interference is discussed.Comment: 8 pages, 3 figure
Adaptive homodyne phase discrimination and qubit measurement
Fast and accurate measurement is a highly desirable, if not vital, feature of
quantum computing architectures. In this work we investigate the usefulness of
adaptive measurements in improving the speed and accuracy of qubit measurement.
We examine a particular class of quantum computing architectures, ones based on
qubits coupled to well controlled harmonic oscillator modes (reminiscent of
cavity-QED), where adaptive schemes for measurement are particularly
appropriate. In such architectures, qubit measurement is equivalent to phase
discrimination for a mode of the electromagnetic field, and we examine adaptive
techniques for doing this. In the final section we present a concrete example
of applying adaptive measurement to the particularly well-developed circuit-QED
architecture.Comment: 9 pages, 8 figures. Published versio
- …
