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ABSTRACT

An investigation of the feasibi1ity.of solar powered

hig h energy lasers in space has been undertaken under the

sponsorship of the NASA/OAST Research Division. Preliminary

analysis indicates that both direct and indirect pumping

methods can lead to high energy lasers h a v i n g interesting

efficiencies and c a p a b i l i t i e s . ; Many topics for further

research have been identified.
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I. INTRODUCTION

NASA is considering several future a p p l i c a t i o n s for h i g h

energy lasers based in space. Two of the most important

-concepts are laser propulsion and laser power transmission.

Laser propulsion would make possible a very efficient means

for orbit raising, l a u n c h i n g heavy payloads to the moon and

other parts o.f the solar system, and also long duration loiter

of air-breathing craft in the upper atmosphere. Laser power

transmission could provide a near-term, very v i a b l e alternative

to the microwave-linked Space Power System (SPS) now being

considered by NASA. Large amounts of solar power, converted'

and transmitted by laser beams, m i g h t be delivered to small

collectors on the earth, on the moon., or in space at a fraction

of the cost of microwave power, and a demonstration could be.

accomplished in the near term. These, and many other p o s s i b i l -

ities, have been described by one of the authors of the present

report in a separate paper.*

W h i l e it is clear that many of the above concepts could be

implemented with combinations and modifications of e x i s t i n g

technology, it is very important to investigate whether the

efficiencies, and thus the c a p a b i l i t i e s , of the postulated

systems can be improved. In p a r t i c u l a r , it is necessary to

seek methods for converting solar photons to laser photons

with maximum efficiency. One of the earliest lasers ever
v
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b u i l t was powered by the sun. That device, b u i l t at the RCA
? +labs in Princeton, N.J. in 1963, used crystalline Ca F2 : Dy

at l i q u i d Neon temperature (27°K) as the lasing medium.

Although it operated successfully, the efficiency was quite

low. It seems strange that in the fourteen years since the RCA .

experiment very little further research has been undertaken to

search for more efficient methods for producing solar-induced

lasing. The present effort represents a new beginning in this

important and promising area of laser science.

W h i l e intuition suggests that exploiting the sun is an

obvious and desirable thing to do, it is important to realize

at the outset that nature imposes some rather serious constraints

upon the utilization of solar energy. There is an instinctive

tendan.cy to think of the sun as the hottest, most intense, most

boundless source of power a v a i l a b l e to mankind. W h i l e focussed

s u n l i g h t is potentially a v a i l a b l e in enormous quantities from

large reflectors, the focal spot is neither as intense nor as

rich in ultraviolet radiation as the energy a v a i l a b l e from

other pumping sources normally used in laboratory lasers. The

main advantage of sunlight is that it is free and a v a i l a b l e in

quantities l i m i t e d only by the cost of the collector. Indeed,

Figure 1 shows that a 300 meter diameter solar collector at the

earth's distance from the sun (1 A.U.) intercepts approximately

100 megawatts of radient flux - - enough to satisfy the needs

of a community of several thousand people if efficient conversion

to electricity were possible. Generating this power with
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Figure 1: Total Solar Energy (Time Averaged) A v a i l a b l e
To Circular* Collectors At.Various Locations.
(To determine usefulness, reduce the a v a i l a b l e
energy by the efficiency of the conversion
process .)

* i.e. - F i l l e d apertures
i n c i d e n t solar flux.
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petroleum requires combusting a one gallon of gasoline/second

or eighty six thousand four hundred gallon.s/day (561,000 Ibs).

Moreover, a solar collector on the earth's surface or in low

earth orbit suffers an immediate efficiency deficit of 50%

because it spends half of its time in darkness! Hence, if

lasers powered by the sun are going to be justifiable, they

have to have high system efficiency, good cost effectiveness,

and other uniquely advantageous capabilities.

In the present paper we shall not elaborate in detail upon

the unique advantages and justifications of solar lasers in

space. References 1 and 2 are devoted to this topic.

Indeed, those reports show that there are numerous important

functions that can be performed only by the sort of solar laser

system under discussion. The cost effectiveness stems from

the diversity of applications, the basic si m p l i c i t y of the

closed-cycle system, the long-duration amortization, and the

economy of scale achieved by extensive proliferation of

relatively modest i n d i v i d u a l units. Here we s h a l l concentrate

only upon physical issues and systems issues. These w i l l be

developed analytically in sections II and III.

For a candidate laser system to be of interest for space

applications, it must be scalable to megawatt or gigawatt power

levels -and it must be as efficient and light-weight as possible.

This tends to l i m i t at the outset the usefulness of inefficient

methods such .as using solar cells to power electric lasers. More

direct approaches are needed, the sjjmmum bonurn being an efficient
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device in which the lasant is directly stimulated by s u n l i g h t .

Thus, a major thrust of the present work has consisted of

"brainstorming" for as many promising candidate methods as

could be identified. Attention has been directed both to the

types of materials which may lase efficiently with direct

solar stimulation and to p o s s i b i l i t i e s for synergistic com-

binations of other excitation methods which may work well in

the space environment. Certain materials that were rejected

in flash-lamp laser research because of low gain or other

limitations have been re-investigated for possible usefulness

in the solar/space situation. A lengthy literature search was

undertaken to ferret out relevant experimental and theoretical

data. Remarkably little information exists in the literature

to support optical pumping calculations of the sort required,

but a few useful publications were found. In this report

we s h a l l concentrate upon a small number of identified p o s s i b i l i t i e s

that appear to be genuinely promising, e x c l u d i n g a large number

of unfruitful ideas that did not survive i n i t i a l scrutiny.

-5-



11. SOLAR LASER SYSTEM CHARACTERISTICS

The most important physical limitations upon the use of the

sun for direct laser pumping are imposed by its low specific

intensity and by the dearth of ultraviolet radiation on the short

wavelength side of the 6000°K black body peak. Very few simple

materials of interest for lasers have ionization potentials as low

as 2 electron volts; hence, if large ion/electron densities are

required, the ionization w i l l have to be augmented by some external

method.

A further problem area involves management of waste l i g h t

(i.e. heat). The solar continuum s.pectrum is quite broad, extend-

ing principally over the 0.2 to 3 micron wavelength range. Typical

lasing species absorb radiation in only a few bands that are usually

no more than a few hundredths of a micron wide at most. All of the

unused solar flux is superflous for direct laser stimulation.

--It is true that many i ndirect laser processes may benefit from

us ing solar heated gases or l i q u i d s to drive generators or other

anci11ary devices, but most gases and l i q u i d s are also poor absorber;

in the v i s i b l e range. Hence the gas would have to be either in-

directly heated in a black plenum or seeded with an opaque material

in order to make maximum use of the l i g h t at the focal point of the

collector. --These dilemmas have led to an interesting concept:

It is entirely possible to design the solar collector as an enormous

filter so that it would focus only the parts of the spectrum which

are useful, a l l o w i n g most of the remaining radiation to simply pass
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on through. A very light-weight, deployable mylar "light-bucket"

with narrow-band reflective coatings should be feasible.

The gain in system efficiency afforded by this gambit should be

very significant, because much weight can be eliminated in the

form of" radiators and other waste heat management equipment. This

should be borne in mind later in this report when we argue that

the efficiency of the lasing process itself is not as important

as other factors affecting the system efficiency.

Let -us turn now to a generalized characterization of a' solar

laser system. Figure 2 shows a conceptual design. The large, low-

weight concentrator brings radiation to an approximate focus, where

it is converted by some means to laser radiation. The laser beam

is then expanded through an optical system to i l l u m i n a t e a large

"adaptive" projection aperture. The adaptive optics of the pro-

jector permit full phase-front control so that the resulting nearly

diffraction-limited beam can be delivered to the user with great

precision and agility. The laser itself includes the laser cavity

and optics, the lasant me.dium, ducting, energy storage medium, heat

exchangers, pumps, a u x i l l i a r y electrical supply, etc. A d d i t i o n a l l y ,

there must be a waste heat radiator, possibly located behind the

concentrator. This sort of system has been named a "STAG"

device. The name o r i g i n a l l y meant "Solar Tracking Adaptive

Geometry."

The total power collected, Pc, by a circular concentrator

normal to the sun's rays is given by

Pc
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Adaptive Reflector

Laser Beam to User

Light Collector

Figure 2: C o n c e p t u a l Vi.ew Of A S T A G D e v i c e
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where I is the "insolation," or flux density of solar radiation

integrated over the entire spectrum (1380 watts/meter^), and DC

is the diameter of the concentrator. Assuming that the focal spot

is nearly diffraction limited, its diameter, ds, w i l l be

ds = CD ) (2)
o

where f is the focal length of the collector and rQ and DQ are,

respectively, the range and diameter of the sun. The value of r

is 1.50 x 1011 meters and DQ is 1.41 x 109 meters. Then the flux

of power through the focal spot, fyr, will he. simply

Noting that the "f-number" of any optical system is defined as

and that the solid angle subtended by the sun is just

>. - ft)1 = 8 . 8 4 x l O ~ 5 s t e r a d i a n , (5 )
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equation 3 simplifies to

"o

Substituting the values of I and n , we have

1 56 * in1*$f = — kilowatts/meter . (7)

So the a v a i l a b l e flux to drive a laser is simply a function of

f-number. Since we have used the value of I for the entire

spectrum, this is the maximum a v a i l a b l e thermal flux. It compares

favorably with the flux a v a i l a b l e from a xenon flash tube in a

laboratory. As previously noted, however, the portion of the total

flux usable for direct pumping may be much smaller because of the

small usable bandwidth; and the spectrum of a xenon tube is heavily

weighted toward the ultraviolet compared with the solar spectrum.

--From equation 7 it can be seen that an f/1 concentrator w i l l give

1.56 kw/cm2, while an f/0.4 concentrator w i l l give 9.75 kw/cm2.

The latter (f/0.4) concentrator probably represents the smallest

desirable f-number, since shorter f-numbers w.i 11 result in a large

increase in the surface area of the concentrator with an accompany-

ing increase in weight.

In summary, the only l i m i t to the total a v a i l a b l e energy is

imposed by practical l i m i t s on the diameter of the concentrator.
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But there is also a rather strong l i m i t to the total brightness

at the focus imposed by f-number. The only way to increase the

brightness (or power flux) in the laser medium is to go through

a conversion process, such as using solar energy to produce

electricity to run the laser directly or drive a flash tube. A

penalty w i l l be paid in system efficiency for such conversions,

however. - .

***

Before elaborating the physics of the laser itself, it will

be instructive for us to examine the relative importance of the

various components in determining overall system feasibility. The

key parameter in any space-based system is total weight. We may

characterize the weight breakdown as follows:

W
s

The quantities are defined thus:

W = Total system weight

W, -
—- = L a s e r we igh t per unit power

' = Laser power

-11-



WP n— = Adaptive projector weight per u n i t (diameter)d"
D = ( D i a m e t e r of c .dap t i ve p ro jec to r a p e r t u r e )

W

c

.
p- - Li g h t concentrator weight per unit area

= A rea of concen t ra to r

—- = Heat rad ia to r we igh t per unit area
aR

AR = A rea of heat rad ia tor

The adap t i ve p ro jec to r d iameter is s h o w n r a i s e d to a power n

b e c a u s e d i f f e ren t s c a l i n g laws apply fo r d i f f e ren t types o f
3

p ro j ec to r s . The most u p - t o - d a t e s c a l i n g in fo rmat ion is shown

i n Fi gure 3 . '

In order to make use of equation 8, we must find reasonable

values for the four terms in the summation. We s h a l l keep the

laser weight per u n i t power as a free parameter. The weight per

unit diameter of the adaptive projector can be read from the l i n e

in Figure 3 for an advanced actively controlled structure. (Hence

Wp = 104 kg for Dp = 30 meters). Assuming that the concentrator

is an erectable structure made of 0.1 mil mylar and a l l o w i n g this

weight again for s t i m u l a t i n g the weight, per unit area, W /a ,\* k*
- 3 2might be,as low as 6 x 10 kg/m which is twice the weight of the

«•«.
basic mylar surface. The required collector area, A , is related

L.

••-.
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D - M E T E R S

IOO

Figure ' 3 : W e i g h t V e r s u s Ape r tu re Fo r L a r g e , D i f f r a c t i o n '
L im i ted P r o j e c t o r A p e r t u r e s .
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to the desired laser power, PL> by

where HJis the overall efficiency of power conversion from solar

radiation to laser radiation, being equal to the product of the

efficiencies of all sub-cycles of the conversion process. :

Substituting AC = rr/4 x Dc
2 and I ~ 1380 W/m2 , we note that

D _ 30.4A/
PMW (10)

c ~~ \ / •

One component of the total efficiency is the efficiency of the

basic laser cycle itself, n. . This is a vvery important parameter

in the optimization because the power wasted in the laser device,

PW, determines the minimum area, AR, of the radiator, and hence

its weight, WR/ Th.e laser power is related to the total collected

power by

PL

For the case of a directly solar pumped laser developed in more

detail in section I I I B the total efficiency is the product of the

laser cycle efficiency and the solar filter efficiency. Assuming that
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the filtering process can be lossless (e.g. energy not in the

pump band reflected into space) then the only waste heat

that must be rejected by the radiator is that associated with

the inefficiency of the laser cycle itself. The power wasted

is related to the collected power and the radiator area by

where the total efficiency rj. = /?* 77 « and TJ and rj / are the

filter and laser cycle efficiencies respectively, a is the

Stefan-Bol tzmann constant, e is the emissivity and TD is the
K

temperature of the radiator. E l i m i n a t i n g P from equations

11 and 12, we see that

(1->V) P,
AR =. —4- • -h- • (13)

f\ „ —. H

This can now be u t i l i z e d in equation 8, together with the v a l u e

of A from equation 9. F i n a l l y we note that the best WR/aR thus
2

far achieved in advanced space radiator design is s 1.0 kq/m ,

and we therefore adopt this value.

At this juncture, it is interesting to compare the weiqhts

of the concentrator and radiator. Combining equations 9 and 13,

we can write

oeTR
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Equation 14 can be restated in terms of weight by simply
-3 2

m u l t i p l y i n g by the previously given values W /a = 6x10 kg/m
L. C.

2
and WR/aR = 1.0 kg/m and inserting the constants:

/ \ 4
\ _ .17 TR . (15)
WR " ^F (1~V \1000°K j

Equation 15 is plotted in Figure 4 with radiator tempera-

ture TR as a parameter. The laser cycle efficiency is assumed

to be 0.3 for this plot. Since it appears as (1-r? ) lower
A-

values w i l l not significantly affect the numerical results.

It is important to note that for indirectly solar pumped

lasers where TJ^ = 1 and all the waste heat must be radiated,

the radiator weight dominates the collector weight for any

reasonable radiator temperature. For a directly solar pumped

laser with a reasonable pump bandwidth (as w i l l be seen in IIIB)

the maximum filter efficiency w i 1 1 in general be less than 0.1

so here the collector weight w i l l dominate for radiator tempera-

tures above 800°K. Therefore, for i n d i r e c t l y pumped lasing

such as the baseline case of electrically excited CO, improvement

of waste heat management is a d r i v i n g issue. We can clearly

see that lasers dependent upon black-body radiation for the

first stage of the energy conversion process w i l l pay a penalty

in system weight because there is no way to avoid the need for

.a large radiator. Clearly, maximum effort should be devoted

to development of lasers u t i l i z i n g filtered radiation or to

better radiator technology. The latter may be more d i f f i c u l t

than the former. . .
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FILTER EFFICIENCY (TJF)

Figure 4: The ratio of collector weight to
radiator weight as a function of
filter efficiency with radiator
temperature as a parameter, rj^ is
assumed to be 0.3
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Let us try out some reasonable numbers for a 100 megawatt

space laser system using the relationships developed in the

prior discussion.

PL - 100 MW

TR = 1000°K

= 1%
X*"" '

10%.

WR 2

-± = 1.0 kg/m
aR

Wc -3 2
-^ = 6x10 /m
ac

W 2
= 11.1 kg/m (n = 2)

P

0.7

D = 10 M

We obtain a radiator weight of 2.3x10 kilograms. The 10 M

projection aperture weighs 1.1x10 kg, so it is clear that the

laser itself w i l l dominate the weight of the entire system if
1+

it exceeds ~7xlO kg. This corresponds to ~700 kg/MW, which is

very power intensive. Present chemical lasers (which are not

-18-



suitable for long term power transmission use in space) being

designed for aircraft use are estimated at 380 kg/MW dry

weight. Our baseline CO laser design is estimated at 1000 kg/MW.

Thus it appears that laser design is going to be very important

in determining system weight. It does seem, however, that

the present state-of-the-art is approaching the needed cri-

terion; but this is not to say that st i l l l i g h t e r lasers would

not be better!

It i_s_ very i nteresting that the wavel ength of the laser does

not strongly enter the optimization (e.g. , through projector

aperture size). Wavelength seems to be important only in so

far as it affects the type of laser and, hence, the laser weight.

This conclusion w i l l l i k e l y be modified when the user at the

other e n d o f the laser beam is also i n c l u d e d in the system

optimi zation.

-19-



I I I . CONVERSION OF SOLAR ENERGY TO LASER RADIATION

At the outset of the work reported here, we n a i v e l y assumed

that some sort of hybrid scheme for converting solar energy to

laser energy would more likely provide optimum system efficiency

than direct solar pumping of the lasant medium. Because of the

findings reported in Section II, however, we have changed our

viewpoint. Since the weight of the laser itself dominates the

system weight so strongly, any extra step in the conversion

process w i l l very likely add significantly to the system weight,

and hence to the cost of deploying the system in space. We

have essentially shown that two or three space Shuttle sorties

to low orbit can probably deploy the needed solar concentrator,

adaptive projector and heat radiator for a 100 Megawatt laser.

But how many more sorties w i l l be needed to d e l i v e r the laser

itself? Since we are not looking toward just one system, but

toward many hundreds of them to achieve many gigawatts of power

transmission capacity, it is essential that the laser be kept

as simple and compact as possible.

In this chapter.we s h a l l outline several po.ssible schemes

for i m p l e m e n t i n g solar to laser energy conversion. First, a "base-

l i n e case" w i l l be described. This is a. conservatively designed

carbon monoxide electric-discharge laser that can almost certainly

be b u i l t within the near term by scaling up from present

technology. . Then a prescription w i l l be given for the

physics of directly pumped solar lasers. An example of a workable

-20-



directly pumped iodine laser w i l l be elaborated. F i n a l l y , some

other promising schemes for both directly pumped and hybrid lasers

w i l l be discussed. Some conclusions w i l l then be drawn concerning

relative cost-effectiveness and performance efficiency.

A. Baseline Case

Figure 5. shows a schematic representation of our proposed

100 megawatt CO EDL baseline solar laser system. The gross

properties of the system are apparent from the figure and wi l l

not be further explained here. The efficiencies quoted are h i g h ,

but not inconsistent with present experimental and theoretical

fi n d i n g s . The overall conversion efficiency is -11%.

W h i l e this concept is straightforward in design and might,,

indeed, be capable of performing many of the missions envisioned

for h i g h energy space lasers, it also has some 1 i a b i 1 i t i e s that

need to be considered. Foremost of these is that this CO EDL

epitomizes the previously mentioned point that the "laser" term

in equation 8 can i n c l u d e - a m u l t i t u d e of- complications: In the

present case there would be at least- four separate closed-loop

f l u i d cycles plus pumps, d u c t i n g , etc. to h a n d l e the f l u i d s .

Also there would be the appreciable weight of the fluids them-

selves and their storage tanks. A d d i t i o n a l l y , a generator and

power co n d i t i o n i n g subsystem would have to produce megavolts of

potential energy and kiloamperes of current. Insulation, b u s i n g

and cooling for the power supply would add further weight. More-

over, heat exchangers and radiators for 826 MVI of waste thermal

energy would be required. Let us try to estimate the total weight

of the principle elements of this melange: .

-21-



CYCLE CONDITIONS:

STATE : 1 2 3 4 5

T,°K : 314 65 78 474 177

P.ATM : 6.0 0.1 0.12 1.7 1.7

MACM #: 0 3.5 3.2 0 0

RADIATOR
(46 MW
REJECTED^

ASSUMPTIONS:

T = 65°K, p = 0.1 ATM.

MACH 3.5

10%CO 90% Ar

P/m = 75 KJ/LB

nL = 65% , nTOTAL = 16%

95% DISCHARGE EFFICIENCY

NORMAL SHOCK RECOVERY

80% COMPRESSOR EFFICIENCY

CAVITY FLOW AREA = 1.6M2

BRAYTON CYCLE EFFICIENCY = 25%

100 MW 5 MICRON
LASER RADIATION

-AAAA-*-

POHER
CONDITION IMG

260 MW SHAFT POWER

HEAT EXCHANGER

RADIATOR
(780 MW
REJECTED)

SOLAR
CONCENTRATOR

(1 KM DIAMETER)

Figure 5: 100 Megawatt Supersonic Carbon Monoxide
Electric Discharge Laser Powered By
Solar.Energy

-22-



The turbine in the primary Brayton cycle would have a-'

specific mass of about 0.09 Kg/kw, y i e l d i n g a total mass of

-19,800 Kg for 220 megawatts of delivered shaft power. (This

is comparable to the propulsion turbine for a large ship.)

The alternator would probably resemble currently a v a i l a b l e

cryogenically cooled devices, which weigh approximately 82 kg/MW.

Hence, for 154 MVI, the expected mass is 12,600 Kg.

The compressors and blowers used to move the CO gas in the

primary loop and the coolant gas (freon?) in all of the secondary

loops would require approximately 30% of the total excitation

energy, or about 60 MW total. We b e l i e v e 0.1 Kg/kw to be a

reasonable number for the specific mass , but this v a l u e needs

verification. This yields 6000 Kg for the compressors them-

selves. The fluids and ducting are also quite heavy. Rough

estimates of the total required flow imply an index of about

.05 Kg/kw, or 3000 Kg.

The heat exchanger would weigh 14,800 Kg, primarily because

of the heat wasted in the first step conversion of solar energy

to shaft horsepower. --The power conditioning e q u i p m e n t would

be quite heavy if transformers and large numbers of rectifiers

were used. Considerable weight savings may be possible

using high vacuum i n s u l a t i o n although this idea has not been

fully exploited. A crude estimate puts the weight of the.

power conditioner at another 10,000 kg.

Fi n a l l y , we come to the laser cavity itself. Various

estimates have been made for the specific mass of the laser

cavity of an advanced CO laser ranging from 100 to 1000 kg/MW.
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A typical value is 400 kg/MW, g i v i n g a total of 40,000 kg for

our 100 MW laser.

Summing all of the foregoing estimates, we obtain a total

of just under 106,000 kg for the total laser system weight.

To this we add «4,000 kg for the ~lkm diameter collector

«20,000 kg for the radiator and approximately 1,000 kg for

a 10 meter projection, g i v i n g ^131,000 kg total. This equates

to at'least five Space Shuttle flights to deploy each device

in low orbit.

All things considered, the baseline case provides an

option that is not too grim. It would be nice, however, to have

a less complicated system. Moreover, while five Shuttle

flights would not be prohibitive cost-wise, fewer would be

better. Since the system needs to be moved to high orbit, some

sort of propulsion system is necessary. This might be cleverly

achieved by venting solar heated hydrogen from the hot plenum

at the focus or by a solar-electric engine. The propulsion

system and reaction mass would add to the weight of the system,

of course, but it would be a v a i l a b l e thereafter for station-

keeping, etc. Station-keeping should not provide any serious

problems. The mass of the system would largely dominate the
2

solar photon thrust upon the 1 km concentrator.
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B. Direct Solar Pumping

In section II, we have already discussed the physical

constraints that nature imposes upon the direct use of solar

radiation. Now we sh a l l investigate whether we can l i v e with-

in those constraints and s t i l l devise a laser that is simpler

and better than the baseline case. In particular, we s h a l l

inquire as to whether direct solar pumping of a continuously

operating h i g h energy laser is possible. To accomplish this,

we need to write down the basic equations for an optically

pumped laser, specialized to the fact that the pumping flux

is not arbitrary but rather is tied directly to the a v a i l a b l e

solar flux. This means that we need to state the kinetics of

the pump and laser processes so that the laser medium can be

scaled to conditions that are appropriate for use of solar

energy at maximum efficiency.

Figure 6 shows schematically the operation of a typical

optically pumped laser. The i m p i n g i n g radiation somehow

pumps the electrons of the l a s i n g species from the ground state

into upper excitation l e v e l s , whence they cascade down to pop-

ulate the upper .laser state. Lasing occurs when the^upper state is

depopulated by stimulated transitions to the lower laser state.

The equation g i v i n g the number-density of electrons in the upper

laser state, N, as a function of time is

.adt A hv Tioss
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Figure 6: Schematic Representation Of Optically
Pumped Laser Energy Levels.

In equation 17, <|> is the i m p i n g i n g optical f l u x > hv is the

photon energy, aA is the absorption coefficient, and T]OSS is

the depopulation lifetime from the upper laser state. T-|oss

may be either radiative or c o l l i s i o n a l . The absorption coefficient

is expressed in .units of cm"1, g i v i n g the absorption per unit

path length. He need to know the absorption as a function of

wavelength so that we can integrate the total absorption over

the solar spectrum. To achieve a useful form for the equations,

let us first think back to the derivation of equation 7 and re-

state the solar flux differentially. The Planck law for the sun

at 6000°K is :

-8142

y -l)
Hatts/m2y (18)

-26-



which can also be stated

4 . 1 0 5 x l 0 2 2

F, = , v Photons/m2 sec y . (19)
X ^ /e2..»39/xp -1)

y \ /

By analogy with equations 1 through 7, we can now derive the flux

a v a i l a b l e at the focal point, <j)f:

fr V 2

(20)

9200 AX

^5 / 2.

y \

• m _!.

"39/x -1^ fl
y / *

Watts/Cm2

this is the f lux that we now subs t i t u te for <j> in equa t i on 17.

D iv id ing by hv in the f i rst term on the right of equat ion 17

g i ves us a photon f l ux , F, per unit b a n d w i d t h , s i n c e

( 2 1 )

We therefore obtain an equation of the fo rm

- Nu ....dt • * • ' (22)
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where we have identified the absorption length, L«, as the

reciprocal of the absorption coefficient, a^. (The absorption

length is the distance over which the i m p i n g i n g pumping flux

decreases by one e-fold.)
dN

In the steady state —- = 0, so from equation 22:
dt

FAX Nn
- U , (23)LA Tloss

and thus

N = A* pTloss . (24)
U LA

Here we have indicated the functional dependence of F upon the

pump wavelength, w h i l e also noting by the subscript p that A A

is the p u m p i n g b a n d w i d t h , which is actually the bandwidth of the

absorbing transition.

This is directly related to the filter efficiency, TJ F,

introduced in C h a p t e r - I I which simply represents the fraction

of the total solar fluence (1380 W/M ) that falls within the

assumption band of the laser, TV is plotted in Figure 7 as a

function of the center wavelength of the absorption band. The

parameter is the bandwidth of the absorbing transition expressed

as a percentage of the center wavelength.
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H a v i n g N y now in hand, we can use it in the gain equation.

Since we know the p u m p i n g rate, we now know the p o p u l a t i o n of

the upper laser state; and we must proceed to find out what g a i n

it w i l l produce per unit di stance al ong the laser. Accordingly

we employ the gain coefficient, G, given by

xlG = • N • !25)

The maximum useful gain length for a solar laser is related

to the absorption length, L., by a factor ranging from 1

to a few depending on the detailed optical design. The so-

called. "laser equation" then results when we m u l t i p l y the

gain by the length over which gain can occur. Hence the

emergent intensity, I , of a beam passing through the lasant

medium is related to the i m p i n g i n g intensity, I , by

Ie = Ioe(
GLA) ^ (26)

For an efficient laser to be designed it is desirable to

have GLA = 1.

Having gathered together the needed components from the fore-

going discussion and h a v i n g substituted the. appropriate constants

for the sun, we f i n a l l y obtain for the solar laser equation

0.24 ._L /V\ <">L ../W\
2.452/An 2 pr 7-7- -

(e P - 1) f,. \ P/ ( A A ) L V.T21 /
ii

-30-



All wavelengths are stated in microns. Subscripts "L" refer

to the laser and subscripts "p" refer to the pump (i.e., the

fraction of the solar spectrum sampled by the absorption of

the lasant). The fraction T]oss/
T
2i gives the ratio of the

mean time for the upper laser state to depopulate by all loss

processes to the mean time for it to depopulate only by radiative

decay in the transition of interest (i..e. 1/T21 is equal to

the Einstein A-Coefficient). The relation between all recombination

times is given by

1 - 1 ... . (28)
T loss T

2 i Collision

Equation 21 tells whether a m e d i u m w i l l lase when i l l u m i n a t e d

by sunlight. The other really crucial quantity needed to

characterize the laser is its overall efficiency. This is simply

found by t a k i n g the ratio of the total energy that actually

emerges as laser energy to the total solar energy captured:

/ <f>A dx
x pump

< -f- , - - . (29)
1 xJt <f>f

nT = nFn/ > n» _fT . F / *
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In this context, it is interesting to recall the idea proposed

at the b e g i n n i n g of section II that the solar concentrator

itself can act as a filter. If only the portion of the solar

spectrum needed for pumping is brought to the focal point, the

amount of waste heat that must be discharged is minimized. Since

radiators would be much heavier than solar concentrators even

as large as several square kilometers in area, this gambit

would have a marked effect upon the system efficiency. The

really nice thing about directly pumped solar lasers is that

cooling is required only in one primary f l u i d loop. Most of

the other ancillary systems can be small and easily manageable

if a good direct lasant can be identified.

The weight of a 100 MW solar pumped laser system is

plotted in Figure 8 as a function of the solar filter efficiency

and indicates clearly the effect of this approach. The nominal

values for weight coefficients used in section II are used in

this Figure (W.= lOOOkg/MW, WD = ll.lkg/m , W = 6xlO"3kg/m ,
A* Y C

2
WR = lkg/m , TR = 1000 K, D p'= 10M) because of the potential

for a very l i g h t weight solar collector relative to a waste

heat radiator, the figure indicates that for example^ a di-

rectly pumped laser with an overall efficiency of only 1.5%

and a filter efficiency of 7.5% can compete with an indirectly

solar pumped laser with an overall efficiency of 10%. This

leaves considerable margin for system improvement if a

successful well matched direct solar pumped laser is found.
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C. Iodine Lasers

A lengthy search of the literature in the Library of Congress

for data on optically pumpe'd ,1 asers produced surprisingly l i t t l e

useful material. The objectives of the search were gain

coefficients, absorption coefficients and cross sections,

radiation lifetimes, collision lifetimes, and profiles of

absorption and emission spectra. Most of the optical pumping

information from the early "flash-lamp" days of laser physics

seems to concern either wideband v i s i b l e absorption in solid

crystals, which are useless for very high energy lasers, or

coincidences between narrow resonance-absorption lines of

electrically excited gases and upper laser states of other

admixed gases. The latter are also useless because narrow lines

absorb so little energy from a black-body spectrum that the

efficiency is very low. (This difficulty also eliminates many

candidate 1asers such as excimers from consideration. Although

they may perform well when stimulated by other mechanisms, they

do not respond to broadband optical pumping.)

One of the best documented materials that has interesting

properties for our purposes is trif1uoromethyl iodide, CF3I.

A laser based on this material was described first by Kasper and

Pimentel in 1964. Other more recent discussions are found in

two papers by Hohla, et al. ' The mode of operation is i l l u s -

trated in Figure 9, adopted from reference 6: Electronically

excited iodine atoms in the 52P% state are generated by photo-

dissociation of the CF 3I. Lasing occurs on the magnetic d i p o l e
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transition at 1.315 y wavelength as the upper state radiates to

the ground state 52P3/2. Breaking the CF 3-I bond requires only

about 2.5 eV, but the photolysis in the experiments described is

accomplished p r i n c i p a l l y by a molecular absorption band 0.05 y

wide centered at -0.275 y (hv-4.75 eV) . This leaves ample excess

energy for the excitation of the photolysis products. Several

other chemical processes affect the composition of the gas a"s

indicated in Figure 9. An important contribution to basic research

would be a laboratory study of the differences in behavior of the

lasant in a 6000°K steady-state, closed cycle configuration from

the pulsed flash tube configuration which was used for all of

the data in the literature.

C2 F6 CF3I (m). I2(n6)

Figure 9: Level Scheme Of Photochemical Iodine Laser
Chemical Species HI Through N6 Occur In
The Laser (Ref. 6).
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W i t h the ana l y t i ca l too ls that we have d e v e l o p e d a b o v e , i t

is now an easy mat ter to use the a v a i l a b l e d a t a f rom re fe rence 6

to i n v e s t i g a t e the feas ib i l i t y of a d i rec t ly pumped so la r l ase r .

From, equat i on 20 we obta in

watts/cm2 , (31)
f

for the so la r f lux in the 0 - 2 7 5 y m o l e c u l a r abso rp t i on band.

Th is is only 0 . 0 2 6 of the total s o l a r f l ux . The pho tons are

reemi t ted at 1.315 u, so the ove ra l l e f f i c i e n c y f rom equa t i on 29

is 0 . 0 0 5 4 or ~%%. T h i s sounds s m a l l , but , r eca l l i ng the d is -

c u s s i o n o f o v e r a l l s y s t e m e f f i c i e n c y and the idea o f p re f i l t e r ing

the sun l igh t at the c o n c e n t r a t o r , th is is p robab ly an a c c e p t a b l e

e f f i c i e n c y . (For e x a m p l e , the p ro jec to r aper ture w o u l d be only

one- four th of that requ i red for the CO b a s e l i n e c a s e . Hence i t

w o u l d w e i g h l e s s than o n e - s i x t e e n t h as m u c h . )

Re fe r r ing to equa t ion 25 , we iden t i f y

' (32)

as the s t i m u l a t e d e m i s s i o n c r o s s s e c t i o n . R e f e r e n c e 6 s h o w s a

i nc reas ing f rom 2x io " Cm2 to 1.8x10 Cm2 as the p r e s s u r e is

reduced. We s h a l l adopt the la t ter v a l u e . The mean v a l u e o f

T , i s -1.3x10 s e c o n d , and the r a d i a t i v e l i f e t ime , T 2 1 , i s
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-10" second. Putting everything together, we obtain from

equation 27

Adopting f# = 0.4 gives GI_A = 0.81. Therefore iodine w i l l work

as a moderately good lasant! By making the laser in several

independently pumped sections to increase the length, GL could

be increased to well in excess of 1.

Thinking back to our treatment of the baseline system,

we can make a very rough estimate of the weight of a 100 N1W

iodine system. For iodine the filter efficiency is low (~3%)

due to the 10% bandwidth combined with the U.V. pump band

(xp = .275y) which does not match the solar spectrum at all

well. (Refer to Figure 7.) In addition even assuming that

each absorbed photon yields one laser photon the laser cycle

efficiency cannot exceed the ratio of quantum energies

j£ = ?' '315 = 0-21. Using the nominal values for specific

weights employed in conjunction with Figure 8, we obtain a

weight estimate of approximately 180,000 kg which compares

with 130,000 kg for the baseline case. The 180,000 kg estimate

uses a specific laser weight of lOOOkg/MW. It is conceivable

that a directly pumped system such as i o d i n e which is much

simpler could weigh half that, 500kg/MW. In this case even

i o d i n e , which is far from the ideal solar pumped laser would

compare favorably with the baseline CO system.
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Hence, in spite of the fact that the system weight is

s t i l l too h i g h , we find numerous encouraging aspects in the

fact that this crude conception can be made to work at all

and that it can compete with the baseline case.

D. Other Directly Pumped Lasers^

Two other possible candidates for.direct pumping have been

considered in some detail:

L i q u i d dye lasers at first seemed to hold some promise,

but were rejected because of low efficiency. Better data is

actually needed to support this conclusion, however. Our best

reference material on dye lasers is due to Dienes.

A very promising class of materials is concealed in obscure

literature which we discovered late in this study. L i q u i d

inorganic chlorides such as POC1 3 - ZrCl „ , POC1 3 •- SnCU . SeOCl 3

and other s i m i l a r compounds can be doped with Nd 3 + to produce

wide absorption bands in the v i s i b l e . The band structure is very

s i m i l a r to that of neodymium doped glass, but the l i q u i d is

capable of h a n d l i n g much h i g h e r average powers than the glass.

References 8 through 15 contain considerable useful information,

but time has not permitted us to fully explore this important

p o s s i b i l i t y . These materials are sufficiently promising to

prompt much more experimental and theoretical research.
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E. Hybrid Schemes

In a d d i t i o n to turbo-electric schemes such as the CO b a s e l i n e

system, there are other possible hybrid solar approaches that

should receive further scrutiny. We list a few here:

A hot, p a r t i a l l y ionized gas, possibly seeded with low

ionization material, might be expanded through, a magnetic field

to create an MHD laser. Alternately, an MHD generator driven by

solar heated gas m i g h t power an electric laser.

An interesting variation on the iodine laser has been pro-

posed to us by Gary Russell of Jet Propulsi on Laboratory. Xenon

gas, partially ionized and heated by s u n l i g h t , would be expanded

supersonically into a plenum. The resulting n o n - e q u i l i b r i u m

distribution of electrons and ions would then be "tickled" by

h i g h voltage, causing an electron cascade. The resulting flash-

of l i g h t , rich in u l t r a v i o l e t , would then pump the iodine. In

other words, it may be possible to b u i l d a "transformer" to convert

the 6000°K black body spectrum to an u l t r a v i o l e t peak that would

improve the p u m p i n g efficiency.

Such ideas, together with a c o n t i n u i n g search for better

lasant materials w i l l no doubt converge eventually to a h i g h

efficiency system.
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IV. CONCLUSIONS AND RECOMMENDATIONS

Our studies have shown beyond reasonable doubt that 100

megawatt h i g h energy lasers in space can b-e energized by the

sun. Even w i t h i n the very l i m i t e d scope of the present contract

work, it has become clear that at least two different types of

laser systems could be developed w i t h i n the near future and

launched by a few Space Shuttle flights. We have high confidence

that the efficiency of such devices can be improved considerably

and that the weight in orbit can be reduced accordingly. The

various p r i n c i p l e components of the system have been discussed

separately, and the nature of the needed system optimizations

has been i ndi cated.

There is a clear need for more research in many areas. The

nature of the needed laser medium is sufficiently well under-

stood that much work can be done toward its realization.

--System optimization should be done for every p l a u s i b l e candi-

date system to e s t a b l i s h which is truly the best. I d e a l l y , the

user should also be i n c l u d e d in the system optimization because

the application may have strong impact on the required character-

istics of the system. I n d i v i d u a l components such as the large

adaptive projector, the deployable solar concentrator, and the

waste heat radiators all require further development and improve-

ment. Above a l l , the laser itself provides a c h a l l e n g i n g and

fascinating technological problem.
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The payoffs that w i l l accrue from the deployment of a

solar laser system in space w i l l have enormous consequences

for the future of the United States. We hope that this report

w i l l provide some modest but significant incentives toward

that end.
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