3,863 research outputs found

    Small, low power analog-to-digital converter

    Get PDF
    A small, low-power, high-speed, 8-bit analog-to-digital converter using silicon chip integrated circuits is suitable for use in airborne test data systems. The successive approximation method of analog-to-digital conversion is used to generate the digital output

    Wind variability of B supergiants

    Get PDF
    We present the most suitable data sets available in the International Ultraviolet Explorer (IUE) archive for the study of time-dependent stellar winds in early B supergiants. The UV line profile variability in 11 B0 to B3 stars is analysed, compared and discussed, based on 16 separate data sets comprising over 600 homogeneously reduced high-resolution spectrograms. The targets include ``normal'' stars with moderate rotation rates and examples of rapid rotators. A gallery of grey-scale images (dynamic spectra) is presented, which demonstrates the richness and range of wind variability and highlights different structures in the winds of these stars. This work emphasises the suitability of B supergiants for wind studies, under-pinned by the fact that they exhibit unsaturated wind lines for a wide range of ionization. The wind activity of B supergiants is substantial and has highly varied characteristics. The variability evident in individual stars is classified and described in terms of discrete absorption components, spontaneous absorption, bowed structures, recurrence, and ionization variability and stratification. Similar structures can occur in stars of different fundamental parameters, but also different structures may occur in the same star at a given epoch. We discuss the physical phenomena that may be associated with the spectral signatures. The diversity of wind patterns evident likely reflects the role of stellar rotation and viewing angle in determining the observational characteristics of azimuthally extended structure rooted at the stellar surface. In addition, SEI line-synthesis modelling of the UV wind lines is used to provide further information about the state of the winds in our program stars. Typically the range, implied by the line profile variability, in the product of mass-loss rate and ion fraction (mdot q_i) is a factor of ~ 1.5, when integrated between 0.2 and 0.9 v_infty ; it can however be several times larger over localised velocity regions. At a given effective temperature the mean relative ion ratios can differ by a factor of 5. The general excess in predicted (forward-scattered) emission in the low velocity regime is discussed in terms of structured outflows. Mean ion fractions are estimated over the B0 to B1 spectral classes, and trends in the ionic ratios as a function of wind velocity are described. The low values obtained for the ion fractions of UV resonance lines may reflect the role of clumping in the wind

    The effects of clumping on wind line variability

    Full text link
    We review the effects of clumping on the profiles of resonance doublets. By allowing the ratio of the doublet oscillator strenghts to be a free parameter, we demonstrate that doublet profiles contain more information than is normally utilized. In clumped (or porous) winds, this ratio can lies between unity and the ratio of the f-values, and can change as a function of velocity and time, depending on the fraction of the stellar disk that is covered by material moving at a particular velocity at a given moment. Using these insights, we present the results of SEI modeling of a sample of B supergiants, zeta Pup and a time series for a star whose terminal velocity is low enough to make the components of its Si IV 1400 doublet independent. These results are interpreted within the framework of the Oskinova et al. (2007) model, and demonstrate how the doublet profiles can be used to extract infromation about wind structure.Comment: 3 pages, to appear in Clumping in Hot Star Winds, W.-R. Hamann, A. Feldmeier & L. Oskinova, eds., Potsdam: Univ.-Verl., 2007, URN: http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-1398

    Temperature dependence of the switching field distributions in all-perpendicular spin-valve nanopillars

    Full text link
    We present temperature dependent switching measurements of the Co/Ni multilayered free element of 75 nm diameter spin-valve nanopillars. Angular dependent hysteresis measurements as well as switching field measurements taken at low temperature are in agreement with a model of thermal activation over a perpendicular anisotropy barrier. However, the statistics of switching (mean switching field and switching variance) from 20 K up to 400 K are in disagreement with a N\'{e}el-Brown model that assumes a temperature independent barrier height and anisotropy field. We introduce a modified N\'{e}el-Brown model thats fit the experimental data in which we take a T3/2T^{3/2} dependence to the barrier height and the anisotropy field due to the temperature dependent magnetization and anisotropy energy.Comment: 5 pages, 4 figure

    Mass loss rates from mid-IR excesses in LMC and SMC O stars

    Get PDF
    We use a combination of BVJHK and Spitzer [3.6], [5.8] and [8.0] photometry to determine IR excesses for a sample of 58 LMC and 46 SMC O stars. This sample is ideal for determining IR excesses because the very small line of sight reddening minimizes uncertainties due to extinction corrections. We use the core-halo model developed by Lamers & Waters (1984a) to translate the excesses into mass loss rates and demonstrate that the results of this simple model agree with the more sophisticated CMFGEN models to within a factor of 2. Taken at face value, the derived mass loss rates are larger than those predicted by Vink et al. (2001), and the magnitude of the disagreement increases with decreasing luminosity. However, the IR excesses need not imply large mass loss rates. Instead, we argue that they probably indicate that the outer atmospheres of O stars contain complex structures and that their winds are launched with much smaller velocity gradients than normally assumed. If this is the case, it could affect the theoretical and observational interpretations of the "weak wind" problem, where classical mass loss indicators suggest that the mass loss rates of lower luminosity O stars are far less than expected.Comment: 15 pages, 10 figures. Accepted for publication in MNRA

    CIR Modulation of the X-ray Flux from the O7.5 III(n)((f)) Star xi Persei?

    Full text link
    We analyze a 162 ks HETG Chandra observation of the O7.5 III(n)((f)) star xi Per, together with contemporaneous H alpha observations. The X-ray spectrum of this star is similar to other single O stars, and not pathological in any way. Its UV wind lines are known to display cyclical time variability, with a period of 2.086 days, which is thought to be associated with co-rotating interaction regions (CIRs). We examine the Chandra and H alpha data for variability on this time scale. We find that the X-rays vary by about 15% over the course of the observations and that this variability is out of phase with variable absorption on the blue wing of the H alpha profiles (assumed to be a surrogate for the UV absorption associated with CIRs). While not conclusive, both sets of data are consistent with models where the CIRs are either a source of X-rays or modulate them.Comment: Accepted by MNRAS. 9 pages, 9 figure

    Ferromagnetic resonance study of Co/Pd/Co/Ni multilayers with perpendicular anisotropy irradiated with Helium ions

    Full text link
    We present a ferromagnetic resonance (FMR) study of the effect of Helium ion irradiation on the magnetic anisotropy, the linewidth and the Gilbert damping of a Co/Ni multilayer coupled to Co/Pd bilayers. The perpendicular magnetic anisotropy decreases linearly with He ion fluence, leading to a transition to in-plane magnetization at a critical fluence of 5x10^{14} ions/cm^2. We find that the damping is nearly independent of fluence but the FMR linewidth at fixed frequency has a maximum near the critical fluence, indicating that the inhomogeneous broadening of the FMR line is a non-monotonic function of the He ion fluence. Based on an analysis of the angular dependence of the FMR linewidth, the inhomogeneous broadening is associated with spatial variations in the magnitude of the perpendicular magnetic anisotropy. These results demonstrate that ion irradiation may be used to systematically modify the magnetic anisotropy and distribution of magnetic anisotropy parameters of Co/Pd/Co/Ni multilayers for applications and basic physics studies

    Distortion of the Stoner-Wohlfarth astroid by a spin-polarized current

    Full text link
    The Stoner-Wohlfarth astroid is a fundamental object in magnetism. It separates regions of the magnetic field space with two stable magnetization equilibria from those with only one stable equilibrium and it characterizes the magnetization reversal of nano-magnets induced by applied magnetic fields. On the other hand, it was recently demonstrated that transfer of spin angular momentum from a spin-polarized current provides an alternative way of switching the magnetization. Here, we examine the astroid of a nano-magnet with uniaxial magnetic anisotropy under the combined influence of applied fields and spin-transfer torques. We find that spin-transfer is most efficient at modifying the astroid when the external field is applied along the easy-axis of magnetization. On departing from this situation, a threshold current appears below which spin-transfer becomes ineffective yielding a current-induced dip in the astroid along the easy-axis direction. An extension of the Stoner-Wohlfarth model is outlined which accounts for this phenomenon.Comment: 8 pages, 6 figure

    Frustration Driven Stripe Domain Formation in Co/Pt Multilayer Films

    Full text link
    We report microscopic mechanisms for an unusual magnetization reversal behavior in Co/Pt multilayers where some of the first-order reversal curves protrude outside of the major loop. Transmission x-ray microscopy reveals a fragmented stripe domain topography when the magnetic field is reversed prior to saturation, in contrast to an interconnected pattern when reversing from a saturated state. The different domain nucleation and propagation behaviors are due to unannihilated domains from the prior field sweep. These residual domains contribute to random dipole fields that impede the subsequent domain growth and prevent domains from growing as closely together as for the interconnected pattern.Comment: 13 pages, 3 figures, to appear in AP
    corecore