6,555 research outputs found

    Quenched and Negative Hall Effect in Periodic Media: Application to Antidot Superlattices

    Full text link
    We find the counterintuitive result that electrons move in OPPOSITE direction to the free electron E x B - drift when subject to a two-dimensional periodic potential. We show that this phenomenon arises from chaotic channeling trajectories and by a subtle mechanism leads to a NEGATIVE value of the Hall resistivity for small magnetic fields. The effect is present also in experimentally recorded Hall curves in antidot arrays on semiconductor heterojunctions but so far has remained unexplained.Comment: 10 pages, 4 figs on request, RevTeX3.0, Europhysics Letters, in pres

    Scaling Theory of Heat Transport in Quasi-1D Disordered Harmonic Chains

    Full text link
    We introduce a variant of the Banded Random Matrix ensemble and show, using detailed numerical analysis and theoretical arguments, that the phonon heat current in disordered quasi-one-dimensional lattices obeys a one-parameter scaling law. The resulting beta-function indicates that an anomalous Fourier law is applicable in the diffusive regime, while in the localization regime the heat current decays exponentially with the sample size. Our approach opens a new way to investigate the effects of Anderson localization in heat conduction, based on the powerful ideas of scaling theory.Comment: Supplemental Report on calculation of heat current include

    The possibility of a metal insulator transition in antidot arrays induced by an external driving

    Full text link
    It is shown that a family of models associated with the kicked Harper model is relevant for cyclotron resonance experiments in an antidot array. For this purpose a simplified model for electronic motion in a related model system in presence of a magnetic field and an AC electric field is developed. In the limit of strong magnetic field it reduces to a model similar to the kicked Harper model. This model is studied numerically and is found to be extremely sensitive to the strength of the electric field. In particular, as the strength of the electric field is varied a metal -- insulator transition may be found. The experimental conditions required for this transition are discussed.Comment: 6 files: kharp.tex, fig1.ps fig2.ps fi3.ps fig4.ps fig5.p

    Nonlinear Dynamics of Composite Fermions in Nanostructures

    Full text link
    We outline a theory describing the quasi-classical dynamics of composite fermions in the fractional quantum Hall regime in the potentials of arbitrary nanostructures. By an appropriate parametrization of time we show that their trajectories are independent of their mass and dispersion. This allows to study the dynamics in terms of an effective Hamiltonian although the actual dispersion is as yet unknown. The applicability of the theory is verified in the case of antidot arrays where it explains details of magnetoresistance measurements and thus confirms the existence of these quasiparticles.Comment: submitted to Europhys. Lett., 4 pages, postscrip

    A repulsive trap for two electrons in a magnetic field

    Full text link
    We study numerically and analytically the dynamics of two classical electrons with Coulomb interaction in a two dimensional antidot superlattice potential in the presence of crossed electric and magnetic fields. It is found that near one antidot the electron pair can be trapped for a long time and the escape rate from such a trap is proportional to the square of a weak electric field. This is qualitatively different from the case of noninteracting electrons which are trapped forever by the antidot. For the pair propagation in the antidot superlattice we found a broad parameter regime for which the pair is stable and where two repulsive electrons propagate together on an enormously large distance.Comment: revtex, 5 pages, 6 figure

    Skipping orbits and enhanced resistivity in large-diameter InAs/GaSb antidot lattices

    Get PDF
    We investigated the magnetotransport properties of high-mobility InAs/GaSb antidot lattices. In addition to the usual commensurability features at low magnetic field we found a broad maximum of classical origin around 2.5 T. The latter can be ascribed to a class of rosetta type orbits encircling a single antidot. This is shown by both a simple transport calculation based on a classical Kubo formula and an analysis of the Poincare surface of section at different magnetic field values. At low temperatures we observe weak 1/B-periodic oscillations superimposed on the classical maximum.Comment: 4 pages, 4 Postscript figures, REVTeX, submitted to Phys Rev

    Local Patterns

    Get PDF
    A pattern is a word consisting of constants from an alphabet Sigma of terminal symbols and variables from a set X. Given a pattern alpha, the decision-problem whether a given word w may be obtained by substituting the variables in alpha for words over Sigma is called the matching problem. While this problem is, in general, NP-complete, several classes of patterns for which it can be efficiently solved are already known. We present two new classes of patterns, called k-local, and strongly-nested, and show that the respective matching problems, as well as membership can be solved efficiently for any fixed k

    Cryogenic micro-calorimeters for mass spectrometric identification of neutral molecules and molecular fragments

    Get PDF
    We have systematically investigated the energy resolution of a magnetic micro-calorimeter (MMC) for atomic and molecular projectiles at impact energies ranging from E≈13E\approx13 to 150 keV. For atoms we obtained absolute energy resolutions down to ΔE≈120\Delta E \approx 120 eV and relative energy resolutions down to ΔE/E≈10−3\Delta E/E\approx10^{-3}. We also studied in detail the MMC energy-response function to molecular projectiles of up to mass 56 u. We have demonstrated the capability of identifying neutral fragmentation products of these molecules by calorimetric mass spectrometry. We have modeled the MMC energy-response function for molecular projectiles and conclude that backscattering is the dominant source of the energy spread at the impact energies investigated. We have successfully demonstrated the use of a detector absorber coating to suppress such spreads. We briefly outline the use of MMC detectors in experiments on gas-phase collision reactions with neutral products. Our findings are of general interest for mass spectrometric techniques, particularly for those desiring to make neutral-particle mass measurements
    • …
    corecore