26,074 research outputs found
Enstrophy Dynamics of Stochastically Forced Large-Scale Geophysical Flows
Enstrophy is an averaged measure of fluid vorticity. This quantity is
particularly important in {\em rotating} geophysical flows. We investigate the
dynamical evolution of enstrophy for large-scale quasi-geostrophic flows under
random wind forcing. We obtain upper bounds on the enstrophy, as well as
results establishing its H\"older continuity and describing the small-time
asymptotics
Trapped ion quantum computation with transverse phonon modes
We propose a scheme to implement quantum gates on any pair of trapped ions
immersed in a large linear crystal, using interaction mediated by the
transverse phonon modes. Compared with the conventional approaches based on the
longitudinal phonon modes, this scheme is much less sensitive to ion heating
and thermal motion outside of the Lamb-Dicke limit thanks to the stronger
confinement in the transverse direction. The cost for such a gain is only a
moderate increase of the laser power to achieve the same gate speed. We also
show how to realize arbitrary-speed quantum gates with transverse phonon modes
based on simple shaping of the laser pulses.Comment: 5 page
Generalized Stable Multivariate Distribution and Anisotropic Dilations
After having closely re-examined the notion of a L\'evy's stable vector, it
is shown that the notion of a stable multivariate distribution is more general
than previously defined. Indeed, a more intrinsic vector definition is obtained
with the help of non isotropic dilations and a related notion of generalized
scale. In this framework, the components of a stable vector may not only have
distinct Levy's stability indices 's, but the latter may depend on its
norm. Indeed, we demonstrate that the Levy's stability index of a vector rather
correspond to a linear application than to a scalar, and we show that the
former should satisfy a simple spectral property
Generally Covariant Conservative Energy-Momentum for Gravitational Anyons
We obtain a generally covariant conservation law of energy-momentum for
gravitational anyons by the general displacement transform. The energy-momentum
currents have also superpotentials and are therefore identically conserved. It
is shown that for Deser's solution and Clement's solution, the energy vanishes.
The reasonableness of the definition of energy-momentum may be confirmed by the
solution for pure Einstein gravity which is a limit of vanishing Chern-Simons
coulping of gravitational anyons.Comment: 12 pages, Latex, no figure
Robust active magnetic dearing control using stabilizing dynamical compensators
The robust control of active magnetic bearings, based on a linearised interval model, is considered. Through robust stability analysis, all the first-order robust stabilizing dynamical compensators for the interval system are obtained. Disturbance attenuation and minimum control effort are also addressed. The approach is applied to a high-speed flywheel supported by two active and two passive magnetic bearings. Simulation and experimental results both show that it is simple, effective, and robust
Topological Bose-Mott Insulators in a One-Dimensional Optical Superlattice
We study topological properties of the Bose-Hubbard model with repulsive
interactions in a one-dimensional optical superlattice. We find that the Mott
insulator states of the single-component (two-component) Bose-Hubbard model
under fractional fillings are topological insulators characterized by a nonzero
charge (or spin) Chern number with nontrivial edge states. For ultracold atomic
experiments, we show that the topological Chern number can be detected through
measuring the density profiles of the bosonic atoms in a harmonic trap.Comment: 5 pages, published versio
Thermalization and temperature distribution in a driven ion chain
We study thermalization and non-equilibrium dynamics in a dissipative quantum
many-body system -- a chain of ions with two points of the chain driven by
thermal bath under different temperature. Instead of a simple linear
temperature gradient as one expects from the classical heat diffusion process,
the temperature distribution in the ion chain shows surprisingly rich patterns,
which depend on the ion coupling rate to the bath, the location of the driven
ions, and the dissipation rates of the other ions in the chain. Through
simulation of the temperature evolution, we show that these unusual temperature
distribution patterns in the ion chain can be quantitatively tested in
experiments within a realistic time scale.Comment: 5 pages, 5 figure
- …
