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Abstract: The robust control of active magnetic bearings, 
based on a linearised interval model, is considered. 
Through robust stability analysis, all the first-order robust 
stabilizing dynamical compensators for the interval system 
are obtained. Disturbance attenuation and minimum 
control effort are also addressed. The approach is applied 
to a high-speed flywheel supported by two active and two 
passive magnetic bearings. Simulation and experimental 
results both show that it is simple, effective, and robust. 
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I. INTRODUCTION 

Active magnetic bearings (AMBs) have several 
advantages over conventional bearings, and are being 
employed increasingly in a variety Qf applications [l]. 
However, two difficulties concernkg magnetic bearing 
control involve system uncertainties and the difficulty of 
obtaining a good velocity signal [2]. In this paper, a basic 
AMB comprising two opposing electromagnets and a rigid 
rotor, as shown in Fig. 1, is considered. To cope with 
system parameter uncertainties, an interval model is 
employed. To avoid the use of a velocity feedback signal, 
a dynamical compensator, which uses only positional 
information, is utilised for control. By deriving a stability 
condition for the closed-loop system, a parameterisation of 
all the robust stabilising dynamical compensators for the 
interval system is obtained. By appropriately selecting the 
free parameters in the robust stabilizing controller, &e H, 
norm of the transfer function from disturbance to output is 
made arbitranly small over the system parameter intervals, 
and the H ,  norm of the controller transfer functiop is 
made arbitrarily close to a lower bound. The prspased 
approach is applied to a high-speed flywheel suppooed by 
two active radial magnetic bearings and two passive axial 
magnetic bearings. 

Electromagnet  I Electromagnet  2 Rotor 

Fig.  I ,  Basic  magne l i c  bearing 

11. PLANT MODEL AND CONTROLLER 

The dynamical mathematical model for the active 
magnetic bearing shown in Fig. 1 can be established as: 

where m and q are, respectively, the mass (kg) and the 
position displacement (m) of the rotor; qo is the nominal 

air gap (m); po = 471 x H/m; A is the total pole-face 
area of each electromagnet (m’); N is the number of turns 
per coil; Il ,I, are the currents in the coils (A); f is an 
unknown disturbance (N); and F is some known force 
acting on the rotor (N). When linearised at the equilibrium 
point 11 = 12 = 10, 4 = 0, with the control diagram shown 
in Fig. 2, the above model (1) becomes 

(2a) 
1 ij - w 2 q  = GU +-(f+ F )  
m 

where o and (3 are determined by I,, qo , and the system 
physical parameters, and U is the derived control action. 
Due to inaccuracies in the measurement of some of the 
physical parameters and changing environmental 
conditions, the parameters o and o are generally 
uncertain. Without loss of generality, however, it can be 
assumed that their values lie within some known intervals, 
Viz. 

where 0 1, w 2, 01 and 0 2  are known scalars satisfying 
0 € 1 0 1  0 2 1 ,  o.Eo1 (321  (2b) 

0 2  201 >o, (31 sa2 < o  (2c) 
If y is the measured value of q, then a general first-order 

output dynamical compensator for system (2) can be 
written in the form [3]: 

i = k,,z + k,,y 
U = k l I y + k l 2 z + k f F  
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where k ,  , i, j = 1,2 , are four scalar controller coefficients, 
to be designed, and the coefficient k f  is given by 

IV. DISTURBANCE ATTENUATION 

The disturbance attenuation specification can be 
expressed as follows: 

Disturbance N' = sup llcrnc (31 - ~ m c  drnc 11: 5 8 0  (6) 
W@Ol 0 2 1  
ae[ol 0 2 1  

where is an arbitrary positive number. 

Magnetic + Theorem 2: Let E~ be an arbitrary positive ,scalar, 
then, the robust stabilizing dynamical compensator for the 
interval system (2), given by (3) and (S), 

(i) guarantees the specification in (6) if the parameter a 
magnet 2 

is taken as 

a =  ( 7 )  Fig. 2. Control System 
~ E O P T  

(ii) guarantees the specification in (6), and minimises the 
index N' with respect to p ,  if the parameters a 
and p are taken as 

(3b) 
1 k ---= '02 '- m a  p a ~ ~ 2 ~ ,  

The resulting closed-loop system can subsequently be 
written in the state-space form: r 

( 4 4  

with , -  
(iii) guarantees the specification in (6), and minimises 

the index N' with respect to both p and T , if the 
parameters a, p and T are taken as 

0 

k21 0 k22 

111. ROBUST STABILIZATION { B=&+S'  
( 9 )  

The dynamical compensator (3) is said to be a robust 
stabilizing compensator for the interval system (2), or is 

2 I*=- 3 
said t(9 robustly stabilize the interval system (2), if the 
matrix. Am, given in (4b) is Hurwitz stable for all 0 and 
o satisfying (2b) and (2c). For robust stabilization of 
system (2) with the dynamical compensator (3), the 
following result holds. 

where in (7)-(9), 8 is an arbitrary real scalar. 

V. MINIMUM CONTROL EFFORT 

The controller given in (3) can be written, in the 
Theorem 1: All the robust stabilizing compensators in frequency domain, as follows: 

the form of (3 ) ,  for system (2), are given by 

l k , ,  =-$-(a: + a )  s - k22 
- 2  

k22 = -P I kl, = Y 

In order to facilitate a small control effort, the following 
(sa) index is proposed: 

with a, p ,  y and T being real scalars satisfying 

a>O, P > O , y * O ,  O < . r < l  (543) 

494 



which can be shown to have the greatest lower bound 

(12) 4 
Jglb = - 

1.21 

The control effort specification can, therefore, be expressed Passive axial 
as magnetic beari 

SE, (13) 

kl1 
kl2 
k2 1 

k22 
k f 

where E, is an arbitrarily given positive scalar. 

256022 539200 
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1.61088OE-2 1.6108808-2 

Theorem 3: Let E,, and E, be two arbitrary positive 
scalars. Then, the robust dynamical stabilizing 

Active radial \ Brushless PM 
magnetic bearing Back-up bearing mtor/generator 

Fig. 3 Schematic of flywheel unit 

compensator given by (3) and (5) for the system hardware platform. Various experiments have been carried 
(2), guarantees the specification in (6 )~  and at the Same 
time, 

out to validate their performance. By way of example, 
Fig.4 shows the initial responses when all four 

simultaneously, xl  and x2 being the horizontal position of 
(14) the flywheel rim, and yl and y2 being the vertical position. 

The results clearly demonstrate the stability attributes of 
the controller for this system. Interestingly, yl also 
indicates the presence of a non-minimum phase zero. This 
is a multi-variable phenomena, and is due to imperfect 

(1) meets the control effort restriction (l3) if is taken electromagnets on each magnetic bearing are energised 
as in (7) and T is chosen as 

P2 +l+, 
5 =  

P2 + 1 0 2  (E,  (1 + 21% IPEOE,) 

(ii) meets the control effort restriction (131, and 
minimises the index N‘ with respect to p if 

matching of the speed of response of the bearings at each 
(15) end of the flywheel rim. 

TABLE 1. CONTROLLER COEFFICIENTS 

I Coefficients I Vertical I Horizontal I 
VI. SIMULATION AND EXPERIMENTS 

The proposed approach has been applied to a flywheel 
energy storage system which is being developed for use in 
urban electric vehicles. A schematic of the flywheel is 
shown in Fig.3. The flywheel rim is supported by two 
active radial magnetic bearings, whose normal air gap is 
qo=0.4 mm, and two passive axial bearings. The active 
bearings have a homopolar topology, each electromagnet 
comprising two abutting E-shaped cores. On the vertical 
axis, the pole-face area of each core is 10.4 x 10-4m2, whilst 
on the horizontal axis the pole-face area is 5.2 x 10“m2. 
Each core carries a coil having 40 turns. The mass of the 
flywheel rim is 12 kg. The upper bounds for the two 
parameters o and (5 in the linear model (2) for the two 
electromagnets on the vertical axis were chosen to be 
o =390 and o2 = -4.5 , while those for the electromagnets 
on the horizontal axis were chosen to be o2 =280 and 
o2 = -2 .  Based on these values and Theorem 3, robust 
controllers in the form of (3) for the electromagnets on 
both the vertical and horizontal axes were obtained. The 
resulting coefficients are shown in Table 1. 

Applying controller (3), with the coefficients given in 
Table 1, to the non-linear system (1) yields the non-linear 
closed-loop control system. Assuming m =6kg for both the 
vertical and horizontal axes, simulations of the non-linear 
closed-loop systems for both axes were carried out, and 
satisfactory results obtained. The controllers were then 
implemented digitally on a TMS32OC40 DSP-based 

0 0 2  04 0 6  

Fig. 4 Initial energsation of flywheel bearing system 
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