83 research outputs found
Generation of Functional CLL-Specific Cord Blood CTL Using CD40-Ligated CLL APC
PMCID: PMC3526610This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
Downregulation Of 14q32 Micrornas In Primary Human Desmoplastic Medulloblastoma
Medulloblastoma (MB) is one of the most common pediatric cancers, likely originating from abnormal development of cerebellar progenitor neurons. MicroRNA (miRNA) has been shown to play an important role in the development of the central nervous system. Microarray analysis was used to investigate miRNA expression in desmoplastic MB from patients diagnosed at a young age (1 or 2 years old). Normal fetal or newborn cerebellum was used as control. A total of 84 differentially expressed miRNAs (64 downregulated and 20 upregulated) were found. Most downregulated miRNAs (32/64) were found to belong to the cluster of miRNAs at the 14q32 locus, suggesting that this miRNA locus is regulated as a module in MB. Possible mechanisms of 14q32 miRNAs downregulation were investigated by the analysis of publicly available gene expression data sets. First, expression of estrogen-related receptor-γ (ESRRG), a reported positive transcriptional regulator of some 14q32 miRNAs, was found downregulated in desmoplastic MB. Second, expression of the parentally imprinted gene MEG3 was lower in MB in comparison to normal cerebellum, suggesting a possible epigenetic silencing of the 14q32 locus. miR-129-5p (11p11.2/7q32.1), miR-206 (6p12.2), and miR-323-3p (14q32.2), were chosen for functional studies in DAOY cells. Overexpression of miR-129-5p using mimics decreased DAOY proliferation. No effect was found with miR-206 or miR-323 mimics. © 2013 Lucon, Rocha, Craveiro, Dilloo, Cardinalli, Cavalcanti, Aguiar, Maurer-Morelli and Yunes.3 SEPEllison, D., Classifying the medulloblastoma: insights from morphology and molecular genetics (2002) Neuropathol Appl Neurobiol, 28, pp. 257-282. , doi:10.1046/j.1365-2990.2002.00419.xGulino, A., Di Marcotullio, L., Ferretti, E., De Smaele, E., Screpanti, I., Hedgehog signaling pathway in neural development and disease (2007) Psychoneuroendocrinology, 32, pp. S25-56. , doi:10.1016/j.psyneuen.2007.03.017Kool, M., Koster, J., Bunt, J., Hasselt, N.E., Lakeman, A., van Sluis, P., Integrated genomics identifies five medulloblastoma subtypes with distinct genetic profiles, pathway signatures and clinicopathological features (2008) PLoS ONE, 3, pp. e3088. , doi:10.1371/journal.pone.0003088Northcott, P.A., Korshunov, A., Witt, H., Hielscher, T., Eberhart, C.G., Mack, S., Medulloblastoma comprises four distinct molecular variants (2010) J Clin Oncol, 29, pp. 1408-1414. , doi:10.1200/JCO.2009.27.4324Gilbertson, R.J., Ellison, D.W., The origins of meduloblastoma subtypes (2008) Annu Rev Pathol, 3, pp. 341-365. , doi:10.1146/annurev.pathmechdis.3.121806.151518Schüller, U., Heine, V.M., Mao, J., Kho, A.T., Dillon, A.K., Han, Y.G., Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form SHH-induced medulloblastoma (2008) Cancer Cell, 14, pp. 123-134. , doi:10.1016/j.ccr.2008.07.005Yang, Z.J., Ellis, T., Markant, S.L., Read, T.A., Kessler, J.D., Bourboulas, M., Medulloblastoma can be initiated by deletion of Patched in lineage-restricted progenitors or stem cells (2008) Cancer Cell, 14 (2), pp. 135-145. , doi:10.1016/j.ccr.2008.07.003Gibson, P., Tong, Y., Robinson, G., Thomson, M.C., Currie, D.S., Eden, C., Subtypes of medulloblastoma have distinct developmental origins (2010) Nature, 468, pp. 1095-1099. , doi:10.1038/nature09587Cohen, S.M., (2010) MiRNAs in CNS Development and Neurodegeneration: Insights from Drosophila Genetics, , http://www.springer.com/978-3-642-04297-3, Springer Available fromSood, P., Krek, A., Zavolan, M., Macino, G., Rajewsky, N., Cell-type-specific signatures of microRNAs on target mRNA expression (2006) Proc Natl Acad Sci U S A, 103 (8), pp. 2746-2751. , doi:10.1073/pnas.0511045103Guo, H., Ingolia, N.T., Weissman, J.S., Bartel, D.P., Mammalian microRNAs predominantly act to decrease target mRNA levels (2010) Nature, 466 (7308), pp. 835-841. , doi:10.1038/nature09267Ferretti, E., De Smaele, E., Po, A., Di Marcotullio, L., Tosi, E., Espínola, M.S.B., MiRNA profiling in human meduloblastoma (2009) Int J Cancer, 124, pp. 568-577. , doi:10.1002/ijc.23948Northcott, P.A., Fernandez, L.A., Hagan, J.P., Ellison, D.W., Grajkowska, W., Gillespie, Y., The miR-17/92 polycistron is upregulated in Sonic Hedgehog driven medulloblastomas and induced by N-myc in Sonic Hedgehog-treated cerebellar neural precursors (2009) Cancer Res, 69, pp. 3249-3255. , doi:10.1158/0008-5472.CAN-08-4710Cho, Y.J., Tsherniak, A., Tamayo, P., Santagata, S., Ligon, A., Greulich, H., Integrative genomic analysis of medulloblastoma identifies a molecular subgroup that drives poor clinical outcome (2011) J Clin Oncol, 29 (11), pp. 1424-1430. , doi:10 1200/JCO. 2010. 28. 5148Fernandez, L.A., Northcott, P.A., Taylor, M.D., Kenney, A.M., Normal and oncogenic roles for microRNAs in the developing brain (2009) Cell Cycle, 8 (24), pp. 4049-4054. , doi:10.4161/cc.8.24.10243Pfister, S.M., Korshunov, A., Kool, M., Hasselblatt, M., Eberhart, C., Taylor, M.D., Molecular diagnostics of CNS embryonal tumors (2010) Acta Neuropathol, 120, pp. 553-566. , doi:10.1007/s00401-010-0751-5Livak, K.J., Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method (2001) Methods, 25, pp. 402-408. , doi:10.1006/meth.2001.1262Pietsch, T., Scharmann, T., Fonatsch, C., Schmidt, D., Ockler, R., Freihoff, D., Characterization of five new cell lines derived from human primitive neuroectodermal tumors of the central nervous system (1994) Cancer Res, 54, pp. 3278-3287Breitling, R., Armengaud, P., Amtmann, A., Herzyk, P., Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments (2004) FEBS Lett, 573, pp. 83-92. , doi:10.1016/j.febslet.2004.07.055Gautier, L., Cope, L., Bolstad, B.M., Irizarry, R.A., Affy - analysis of Affymetrix GeneChip data at the probe level (2004) Bioinformatics, 20, pp. 307-315. , doi:10.1093/bioinformatics/btg405Gentleman, R.C., Carey, V.J., Bates, D.M., Bolstad, B., Dettling, M., Dudoit, S., Bioconductor: open software development for computational biology and bioinformatics (2004) Genome Biol, 5, pp. R80Zhou, J., Tian, Y., Li, J., Lu, B., Sun, M., Zou, Y., miR-206 is down-regulated in breast cancer and inhibits cell proliferation through the up-regulation of cyclinD2 (2013) Biochem Biophys Res Commun, 433 (2), pp. 207-212. , doi:10.1016/j.bbrc.2013.02.084Birks, D.K., Barton, V.N., Donson, A.M., Handler, M.H., Vibhakar, R., Foreman, N.K., Survey of MicroRNA expression in pediatric brain tumors (2011) Pediatr Blood Cancer, 56 (2), pp. 211-216. , doi:10.1002/pbc.22723Huang, Y.W., Liu, J.C., Deatherage, D.E., Luo, J., Mutch, D.G., Goodfellow, P.J., Epigenetic repression of microRNA-129-2 leads to upregulation of SOX4 oncogene in endometrial cancer (2009) Cancer Res, 69 (23), pp. 9038-9046. , doi:10.1158/0008-5472.CAN-09-1499Shen, R., Pan, S., Qi, S., Lin, X., Cheng, S., Epigenetic repression of microRNA-129-2 leads to upregulation of SOX4 in gastric cancer (2010) Biochem Biophys Res Commun, 394 (4), pp. 1047-1052. , doi:10.1016/j.bbrc.2010.03.121Neben, K., Korshunov, A., Benner, A., Wrobel, G., Hahn, M., Kokocinski, F., Microarray-based screening for molecular markers in medulloblastoma revealed STK15 as independent predictor for survival (2004) Cancer Res, 64 (9), pp. 3103-3111. , doi:10.1158/0008-5472.CAN-03-3968de Bont, J.M., Kros, J.M., Passier, M.M., Reddingius, R.E., Sillevis Smitt, P.A., Luider, T.M., Differential expression and prognostic significance of SOX genes in pediatric medulloblastoma and ependymoma identified by microarray analysis (2008) Neuro Oncol, 10 (5), pp. 648-660. , doi:10.1215/15228517-2008-032Garzia, L., Andolfo, I., Cusanelli, E., Marino, N., Petrosino, G., De Martino, D., MicroRNA-199b-5p impairs cancer stem cells through negative regulation of HES1 in medulloblastoma (2009) PLoS ONE, 4, p. 4998. , doi:10.1371/journal.pone.0004998Gokhale, A., Kunder, R., Goel, A., Sarin, R., Moiyadi, A., Shenoy, A., Distinctive microRNA signature of medulloblastomas associated with the WNT signaling pathway (2010) J Cancer Res Ther, 6, pp. 521-529. , doi:10.4103/0973-1482.77072de Antonellis, P., Medaglia, C., Cusanelli, E., Andolfo, I., Liguori, L., De Vita, G., MiR-34a targeting of notch ligand delta-like 1 impairs CD15+/CD133+ tumor-propagating cells and supports neural differentiation in medulloblastoma (2011) PLoS ONE, 6 (9), pp. e24584. , doi:10.1371/journal.pone.0024584Grunder, E., D'Ambrosio, R., Fiaschetti, G., Abela, L., Arcaro, A., Zuzak, T., MicroRNA-21 suppression impedes medulloblastoma cell migration (2011) Eur J Cancer, 47, pp. 2479-2490. , doi:10.1016/j.ejca.2011.06.041Uziel, T., Karginov, F.V., Xie, S., Parker, J.S., Wang, Y.D., Gajjar, A., The miR-17 92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma (2009) Proc Natl Acad Sci USA, 106, pp. 2812-2817. , doi:10.1073/pnas.0809579106Chédotal, A., Kerjan, G., Moreau-Fauvarque, C., The brain within the tumor: new roles for axon guidance molecules in cancers (2005) Cell Death Differ, 12 (8), pp. 1044-1056. , doi:10.1038/sj.cdd.4401707Aref, D., Moffatt, C.J., Agnihotri, S., Ramaswamy, V., Dubuc, A.M., Northcott, P.A., Canonical TGF-b pathway activity is a predictor of SHH-driven medulloblastoma survival and delineates putative precursors in cerebellar development (2013) Brain Pathol, 23, pp. 178-191. , doi:10.1111/j.1750-3639.2012.00631.xLuo, X., Liu, J., Cheng, S.Y., The role of microRNAs during the genesis of medulloblastoma induced by the hedgehog pathway (2011) Biomed Res, 25 (1), pp. 42-48. , doi:10. 1016/S1674-8301(11)Northcott, P.A., Shih, D.J., Peacock, J., Garzia, L., Morrissy, A.S., Zichner, T., Subgroup-specific structural variation across 1,000 medulloblastoma genomes (2012) Nature, 488 (7409), pp. 49-56. , doi:10.1038/nature11327Song, G., Wang, L., miR-433 and miR-127 arise from independent overlapping primary transcripts encoded by the miR-433-127 locus (2008) PLoS ONE, 3, pp. e3574. , doi:10.1371/journal.pone.0003574Remke, M., Hielscher, T., Korshunov, A., Northcott, P.A., Bender, S., Kool, M., FSTL5 is a marker of poor prognosis in non-WNT/non-SHH medulloblastoma (2011) J Clin Oncol, 29 (29), pp. 3852-3861. , doi:10.1200/JCO.2011.36.2798Edgar, R., Domrachev, M., Lash, A.E., Gene expression omnibus: NCBI gene expression and hybridization array data repository (2002) Nucleic Acids Res, 30, pp. 207-210. , doi:10.1093/nar/30.1.207Yu, S., Wang, X., Ng, C.F., Chen, S., Chan, F.L., ERRgamma suppresses cell proliferation and tumor growth of androgen-sensitive and androgen-insensitive prostate cancer cells and its implication as a therapeutic target for prostate cancer (2007) Cancer Res, 67 (10), pp. 4904-4914. , doi:10.1158/0008-5472.CAN-06-3855Mancuso, M., Leonardi, S., Giardullo, P., Pasquali, E., Borra, F., Stefano, I.D., The estrogen receptor beta agonist diarylpropionitrile (DPN) inhibits medulloblastoma development via anti-proliferative and pro-apototic pathways (2011) Cancer Lett, 308 (2), pp. 197-202. , doi:10.1016/j.canlet.2011.05.004da Rocha, S.T., Edwards, C.A., Ito, M., Ogata, T., Ferguson-Smith, A.C., Genomic imprinting at the mammalian Dlk1-Dio3 domain (2008) Trends Genet, 24, pp. 306-316. , doi:10.1016/j.tig.2008.03.011Lin, S.P., Youngson, N., Takada, S., Seitz, H., Reik, W., Paulsen, M., Asymmetric regulation of imprinting on the maternal and paternal chromosomes at the Dlk1-Gtl2 imprinted cluster on mouse chromosome 12 (2003) Nat Genet, 35, pp. 97-102. , doi:10.1038/ng1233Takada, S., Paulsen, M., Tevendale, M., Tsai, C.E., Kelsey, G., Cattanach, B.M., Epigenetic analysis of the Dlk1-Gtl2 imprinted domain on mouse chromosome implications for imprinting control from comparison with Igf2-H19 (2002) Hum Mol Genet, 12, pp. 77-86. , doi:10.1093/hmg/11.1.77Kagami, M., O'Sullivan, M.J., Green, A.J., Watabe, Y., Arisaka, O., Masawa, N., The IG-DMR and the MEG3-DMR at human chromosome 14q32 2: hierarchical interaction and distinct functional properties as imprinting control centers (2010) PLoS Genet, 6, pp. e1000992. , doi:10.1371/journal.pgen.1000992Diede, S.J., Guenthoer, J., Geng, L.N., Mahoney, S.E., Marotta, M., Olson, J.M., DNA methylation of developmental genes in pediatric medulloblastomas identified by denaturation analysis of methylation differences (2010) Proc Natl Acad Sci U S A, 107 (1), pp. 234-239. , doi:10.1073/pnas.0907606106Thayanithy, V., Park, C., Sarver, A.L., Kartha, R.V., Korpela, D.M., Graef, A.J., Combinatorial treatment of DNA and chromatin-modifying drugs cause cell death in human and canine osteosarcoma cell lines (2012) PLoS ONE, 7 (9), pp. e43720. , doi:10.1371/journal.pone.0043720Pierson, J., Hostager, B., Fan, R., Vibhakar, R., Regulation of cyclin dependent kinase 6 by microRNA 124 in medulloblastoma (2008) J Neurooncol, 90, pp. 1-7. , doi:10.1007/s11060-008-9624-3Li, K.K., Pang, J.C., Ching, A.K., Wong, C.K., Kong, X., Wang, Y., miR-124 is frequently down-regulated in meduloblastoma and is a negative regulator of SLC16A1 (2009) Hum Pathol, 40 (9), pp. 1234-1243. , doi:10.1016/j.humpath.2009.02.003Ferretti, E., De Smaele, E., Miele, E., Laneve, P., Pó, A., Pelloni, M., Concerted miRNA control of Hedgehog signalling in cerebellar neuronal progenitor and tumour cells (2008) EMBO J, 27, pp. 2616-2627. , doi:10.1038/emboj.2008.172Venkataraman, S., Alimova, I., Fan, R., Harris, P., Foreman, N., Vibhakar, R., MicroRNA 128a increases intracellular ROS level by targeting Bmi-1 and inhibits medulloblastoma cancer cell growth by promoting senescence (2010) PLoS ONE, 5 (6), pp. e10748. , doi:10.1371/journal.pone.0010748Genovesi, L.A., Carter, K.W., Gottardo, N.G., Giles, K.M., Dallas, P.B., Integrated analysis of miRNA and mRNA expression in childhood medulloblastoma compared with neural stem cells (2011) PLoS ONE, 6 (9), pp. e23935. , doi:10.1371/journal.pone.0023935Weeraratne, S.D., Amani, V., Neiss, A., Teider, N., Scott, D.K., Pomeroy, S.L., miR-34a confers chemosensitivity through modulation of MAGE-A and p53 in medulloblastoma (2011) Neuro Oncol, 13 (2), pp. 165-175. , doi:10.1093/neuonc/noq179Lv, S.Q., Kim, Y.H., Giulio, F., Shalaby, T., Nobusawa, S., Yang, H., Genetic alterations in MicroRNAs in medulloblastomas (2012) Brain Pathol, 22, pp. 230-239. , doi:10.1111/j.1750-3639.2011.00523.xWang, X.M., Zhang, S.F., Cheng, Z.Q., Peng, Q.Z., Hu, J.T., Gao, L.K., MicroRNA383 regulates expression of PRDX3 in human medulloblastomas (2012) Zhonghua Bing Li Xue Za Zhi, 41 (8), pp. 547-552. , doi:10.3760/cma.j.issn.0529-5807.2012.08.009Li, K.K.W., Pang, J.C.S., Lau, K.M., Zhou, L., Mao, Y., Wang, Y., MiR-383 is downregulated in medulloblastoma and targets peroxiredoxin 3 (PRDX3) (2013) Brain Pathol, 23 (4), pp. 413-425. , doi:10.1111/bpa.12014Weeraratne, S.D., Amani, V., Teider, N., Pierre-Francois, J., Winter, D., Kye, M.J., Pleiotropic effects of miR-183 96 182 converge to regulate cell survival, proliferation and migration in meduloblastoma (2012) Acta Neuropathol, 123, pp. 539-552. , doi:10.1007/s00401-012-0969-5Venkataraman, S., Birks, D.K., Balakrishnan, I., Alimova, I., Harris, P.S., Patel, P.R., MicroRNA 218 acts as a tumor suppressor by targeting multiple cancer phenotype-associated genes in medulloblastoma (2013) J Biol Chem, 228 (3), pp. 1918-1928. , doi:10.1074/jbc.M112.396762Wei, L., Yan-hua, G., Teng-fei, C., Xiao-zhong, P., Jian-gang, Y., Zhen-yu, M., Identification of differentially expressed microRNAs by microarray: a possible role for microRNAs gene in medulloblastomas (2009) Chin Med J, 122 (20), pp. 2405-241
EBV-gp350 Confers B-Cell Tropism to Tailored Exosomes and Is a Neo-Antigen in Normal and Malignant B Cells—A New Option for the Treatment of B-CLL
gp350, the major envelope protein of Epstein-Barr-Virus, confers B-cell tropism to the virus by interacting with the B lineage marker CD21. Here we utilize gp350 to generate tailored exosomes with an identical tropism. These exosomes can be used for the targeted co-transfer of functional proteins to normal and malignant human B cells. We demonstrate here the co-transfer of functional CD154 protein on tailored gp350+ exosomes to malignant B blasts from patients with B chronic lymphocytic leukemia (B-CLL), rendering B blasts immunogenic to tumor-reactive autologous T cells. Intriguingly, engulfment of gp350+ exosomes by B-CLL cells and presentation of gp350-derived peptides also re-stimulated EBV-specific T cells and redirected the strong antiviral cellular immune response in patients to leukemic B cells. In essence, we show that gp350 alone confers B-cell tropism to exosomes and that these exosomes can be further engineered to simultaneously trigger virus- and tumor-specific immune responses. The simultaneous exploitation of gp350 as a tropism molecule for tailored exosomes and as a neo-antigen in malignant B cells provides a novel attractive strategy for immunotherapy of B-CLL and other B-cell malignancies
Proapoptotic genes BAX and CD40L are predictors of survival in transitional cell carcinoma of the bladder
The purpose of the study was to investigate the effects of expression of a range of genes involved in apoptosis on outcome in bladder cancer. Immunohistochemistry was used to examine expression of BCL2, BAX, P53, CD40 and CD40L in archival tissues of patients included in various treatment trials for transitional cell carcinoma (TCC) of the bladder. Data were collected on 94 patients who first presented with either invasive or superficial bladder cancer. Median follow-up for alive patients was 83 months (m) (range 12-195 m). Median survival was 80 m (95% CI=56-128 m). Median survivals for the various markers were as follows: BAX-positive patients 110 m vs BAX-negative patients 18 m (P=0.0002); CD40L-positive patients 95 m vs CD40L-negative patients 45 m (P=0.04); BCL2-positive patients 44 m and BCL2-negative patients 74 m, (P=0.64); CD40-positive patients 110 m and CD40 negative patients 45 m (P=0.12); and P53 positive patients 80 m and P53 negative patients 45 m (P=0.58). In conclusion, it was seen that overexpressions of BAX and CD40L are prognostic of better survival in TCC of the bladder. Our results also raise the possibility of the future development of CD40- and CD40 ligand-based immunotherapy for bladder cancer. This study links proapoptotic and antiapoptotic markers to overall survival
Immune Cell Recruitment and Cell-Based System for Cancer Therapy
Immune cells, such as cytotoxic T lymphocytes, natural killer cells, B cells, and dendritic cells, have a central role in cancer immunotherapy. Conventional studies of cancer immunotherapy have focused mainly on the search for an efficient means to prime/activate tumor-associated antigen-specific immunity. A systematic understanding of the molecular basis of the trafficking and biodistribution of immune cells, however, is important for the development of more efficacious cancer immunotherapies. It is well established that the basis and premise of immunotherapy is the accumulation of effective immune cells in tumor tissues. Therefore, it is crucial to control the distribution of immune cells to optimize cancer immunotherapy. Recent characterization of various chemokines and chemokine receptors in the immune system has increased our knowledge of the regulatory mechanisms of the immune response and tolerance based on immune cell localization. Here, we review the immune cell recruitment and cell-based systems that can potentially control the systemic pharmacokinetics of immune cells and, in particular, focus on cell migrating molecules, i.e., chemokines, and their receptors, and their use in cancer immunotherapy
The CD70-CD27 pathway is essential for stimulation of a cytotoxic T-cells against acute lymphoblastic leukemia (ALL) cells
- …
