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Abstract To explore the anti-tumor effect and immune

mechanism mediated by a new recombinant adeno-asso-

ciated virus (rAAV) encoding secondary lymphoid tissue

chemokine (SLC) mature peptide gene. AAV Helper-Free

system was used for rAAV-SLC package. The anti-tumor

effect of SLC was detected by bearing tumor established

from Hepal-6 cells both in C57BL/6J and nude mice. Flow

cytometry analysis and IHC for Tumor-infiltrating T cells

and CD11c?DCs were also investigated to explore the

immunological mechanism. rAAV-SLC was successfully

packaged in AAV293 cells and transfected Hepal-6 tumor

cells at high efficiency. The anti-tumor effect was dem-

onstrated by less tumor weight and longer survival out-

come. Coincident with the anti-tumor response, local

elaboration of SLC within the tumor bed elicited a heavy

infiltration of CD4?, CD8?T cells and CD11c? dendritic

cells into the tumor sites. More importantly, there was

higher infiltration of Foxp3? regulatory T cells (Tregs).

Local elaboration of SLC mediated by rAAV-SLC has

strong T cell mediated anti-tumor effect. The study also

suggested that Tregs in the tumor microenvironment tam-

pered the anti-tumor effect.
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Introduction

Chemokines are small diffusible or matrix-associated pro-

teins that transmit chemotactic signals into cells through

pertussis toxin-sensitive, G protein-coupled receptors.

Among those chemokines, the chemokine secondary lym-

phoid tissue chemokine (SLC/CCL21) has been demon-

strated to be unique one. It has been believed SLC and its

receptor CCR7 play an important role in establishing the

functional micro-environment in the secondary lymphoid

tissues [1–12]. SLC is constitutively produced by high

endothelial venules and by stromal cells within T cell zones

of lymphoid organs. CCR7 is present on T cell subpopu-

lations and is up-regulated by maturing dendritic cells and

helps direct the immune effector cells to secondary lym-

phoid organs [6, 13, 14]. A spontaneous mouse line lacking

SLC/CCL21 [15] and CCR7 knockout mice [16] show

impaired homing of T cells into lymph nodes and Peyer’s

patches within the small intestine. In addition to CCR7,

SLC also interacts with the CXCR3 receptor, through

which block angiogenesis in vivo [17]. Previous work

demonstrated that the chemotactic activity of SLC for DCs

and T cells could be harnessed to generate antitumor

immune responses [18–20]. Intratumoral injection of SLC-

gene-modified DCs resulted in more significant tumor

growth inhibition [21]. It can be estimated that stronger

response will be induced by attracting much larger num-

bers of effector T cells and APCs to the site of tumor, if a

more efficient expression system established to produce

SLC in tumor bed. The efficiency of an expression vector is

one of the key aspects for gene therapy. Recently, it has

been extensively demonstrated that recombinant adeno-

associated virus (rAAV) are emerging nonpathogenic

vectors with potential for cancer gene therapy. rAAV can

successfully infect and transduce a broad variety of cell and
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tissue types, such as brain, liver, muscle, etc. [22–25]. Over

the last several years, some in vivo studies using AAV have

shown efficacious results in the treatment of multiple

diseases in animal models and in human clinical trials

[26, 27].

In this study, we evaluated the potential of rAAV as a

vector for in vivo SLC gene modification of tumors and

tested its antitumor properties.

Materials and methods

Animals

C57BL/6J (H-2b), BALB/c (H-2d) and female nude mice,

all 6–8 weeks of age, were purchased from Chinese

Academy of Sciences and housed at the Animal Mainte-

nance Facility of the Fudan University Shanghai Medical

College.

Medium and chemokine

Complete medium consisted of RPMI 1640 with 10 % heat-

inactivated FCS, 0.1 mM nonessential amino acids, 1 lM

sodium pyruvate, 2 mM fresh L-glutamine, 100 lg/ml strep-

tomycin, 100 units/ml penicillin, 50 lg/ml gentamicin,

0.5 lg/ml fungizone. Serum-free Opti-MEM I medium

(GIBCO-BRL, Gaithersburg, Md.) Recombinant murine SLC

was obtained from BIODESIGN (Saco,ME); Rat-anti-mouse

SLC antibody was purchased from eBioScience company.

Cell lines

A mouse hepatocellular carcinoma cell line, Hepal-6 tumor

cells (ATCC, catalog No: CRL-1830) were purchased from

Chinese Academy of Sciences. AAV293 cells were pur-

chased from Stratagen System Company.

Production and purification of rAAV-SLC

AAV Helper-Free system (Stratagene System Company,

USA) was used for rAAV package. To amplify the frag-

ments containing full coding region, the following specific

primers of murine chemokine SLC was used. 50AGC GAA

TTC TAC AGC TCT GGT CTC ATC CTC A 30 (sense),

cloned into EcoR | site; 50GCG CTC GAG GTC TCT TTT

CTA GCT CCC TCT TTG 30 (antisense), cloned into

Xho | site. Total cellular RNA was extracted from lymph

nodes from C57BL/6 J mice. The above fragments were

amplified by RT-PCR (QIAGEN, Germany). After con-

firming the entire nucleotide sequence of PCR products, the

EcoRI-XhoI fragment was inserted into the multiple clon-

ing sites (MCS) of the pAAV-IRES-hrGFP vector, which

contains the CMV promoter and AAV2 inverted terminal

repeats (ITRs). rAAV-SLC serotype 2 vectors were pre-

pared by using the three-plasmid cotransfection system. In

addition, hrGFP expression was used to ascertain the

transduction efficiency of the respective target. AAV293

cells were harvested 72 h post-transfection and lysed by

repeated freezing and thawing. DNase|treatment of viral

preparations was performed to digest unencapsidated

DNA, and Real-time Quantitative PCR (QIAGEN) analysis

was used to determine the particle genome titer.

Cy3-labeled viral transduction

To investigate the infectious entry pathway of rAAV-SLC

and assess AAV-mediated gene transfer, purified virus was

labeled with the carbocyanine dye Cy3 (Amersham, NJ,

USA). Hepal-6 cells were infected with 1 9 1011 particles/

ml of Cy3-conjugated rAAV (*106 particles/cell) in

binding buffer (DMEM containing 2 mM glucose, 10 mM

HEPES [pH 7.3], and 1 % bovine serum albumin) at 37 �C

unless otherwise noted. Cells were washed 3 times with

binding buffer prior to infection. Prior to fixation, the

binding buffer was removed and the cells were washed 3

times again. Cells were then fixed with 4 % paraformal-

dehyde in PBS for 15 min at room temperature and washed

3 times with PBS. Where indicated, cells were either

treated for 5 min at room temperature with 1-lg/ml DAPI

(Inc., Eugene, OR) in PBS with 0.1 % Triton X-100 and

washed 3 times with PBS or mounted in medium con-

taining DAPI, which was used to indicate the position of

the cell nucleus. Distribution of Cy3-AAV particles in

Hepal-6 cells at different time points (Control, 60 min, 2 h,

12 h, 24 h, 72 h) post infection was analyzed by confocal

microscopy.

Twenty-four hours before transfection, Hepal-6 cells

were plated in growth medium without antibiotics and

grew to be approximately 80 % confluent. The cells were

washed once with serum free Opti-MEM I medium, and

incubated with 100 MOI of rAAV for different time points

(control, 60 min, 2 h, 12 h, 24 h, 72 h) at 37 �C with 7 %

CO2 with gentle agitation every 15 min. After infection,

cells were washed three times and then cultured in com-

plete RPMI medium until further analyses.

Detection of SLC produced by Hepal-6 cells infected

with rAAV-SLC

SLC expression of Hepal-6 cells post-transfection was

confirmed by RT-PCR and specific ELISA. Supernatants

were collected from Hepal-6 cells with either rAAV-GFP

or rAAV-SLC 48 h post-infection and stored in -76 �C for

further use. A chemotaxis assay was used to further

determine the levels and the bioactivity of SLC produced in
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the supernatant of SLC-modified Hepal-6 cells. Superna-

tants from infected cells were added to the bottom chamber

of 24-well plates with 6.5-mm diameter, 5 lm pore poly-

carbonate Transwell insets (Corning Coster, Cambridge,

MA) in duplicate samples, as the source of chemo attrac-

tant in chemotaxis assays, with T cells (107) being per-

formed in the upper chamber as responder cells. At the

same time, recombinant mouse SLC (100 ng/ml, BIODE-

SIGN, ME) were added to the bottom chamber as positive

control. T cells were purified from normal C57BL/6J

mouse spleen using mouse T cell recovery column kit

(Cedarlane, Ontario, Canada) according to the instructions

of the manufacturer. For determining the number of cells,

104 polystyrene beads (15-lm diameter; Bangs Laborato-

ries, Fishers, IN) were added to the lower chamber previ-

ously. Samples were stained with antibodies against CD3

(for T cells) and counted on a FACS caliber (Becton–

Dickinson, San Jose, CA). The percentage of migration in

each sample (% input) was determined from numbers of

the starting cells and the migrated cells by the equation:

[(No cellsSample/No cellsInput) 9 5] 9 100.

Tumor establishment in C57BL/6J and nude mice

Hepal-6 cells (2 9 106 cells/200 ll), infected by rAAV-

SLC or rAAV-GFP virus or noninfected as mock control

were injected subcutaneously (s.c.) into the right flank of

6–8-week-old C57BL/6 J and nude mice. At the same time,

intra-tumor (i.t.) injection of rAAV-SLC (5 ll, 0.6 3 109

viral particles) into established tumors was studied. As

previously indicated, the AAV viral vectors were delivered

to six sites, 0.5 mm apart, along the needle track as the

needle was withdrawn with a volume of *0.8 ll at each of

the six sites over 10 min. The needle was left in the tissue

for an additional 5 min and then was slowly withdrawn.

Developing tumors were monitored every day for 45 days.

Tumors were harnessed on the day of 20 and weighed.

Western blot analysis for SLC expression in the tumor

sites

The harnessed tumor tissues were lysed with lysis buffer

(RIPA) on ice. After centrifugation at 14,000 rpm at 4 �C

Fig. 1 rAAV-SLC was constructed and infected Hepal-6 cells at high

efficiency. a The entire nucleotide sequence of SLC was cloned into

the MCS of the pAAV-IRES-hrGFP vector; Positive clones were

demonstrated by restriction digestion (b) and by PCR (c); (d) rAAV-

SLC was packaged in AAV293 cells by using the three-plasmid co-

transfection system. GFP expression was served as a useful expres-

sion marker; e distribution of Cy3-rAAV-SLC particles (red) in

Hepal-6 cells 2 h post-transduction were observed to shift toward the

nucleus and begin to accumulate at the nuclear envelope, detected by

laser scanning confocal microscope. The position of the cell nucleus

was assessed by DAPI (blue) staining. A representative image is

shown, consisting of a single plane of focus through the center of a

cell; f 72 h post-transduction, SLC expression in Hepal-6 cells were

analyzed by fluorescence microscopy for GFP detection
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for 30 min, supernatants were collected and total protein

concentrations were determined by BCA assay (Pierce,

Rockford, IL). Equal amounts of denatured proteins were

loaded onto 10 % SDS-PAGE gel and transferred on PVDF

membrane (Millipore, Bedford, MA). Membranes were

blocked with 5 % nonfat milk in TBST (19 TBS con-

taining 0.1 % Tween 20), then incubated with primary

antibodies to SLC and b-actin (eBioScience, San Diego,

CA) overnight, After three times washing with TBST,

HRP-conjugated secondary antibodies (KPL, Gaithersburg,

MD) were bound and performed with chemiluminescence

using SuperSignal West Pico substrate (Pierce, Rockford,

IL).

IHC and flow cytometry analysis of tumor-infiltrating

T cells and CD11c? DCs

For analysis of cells infiltration, some tumors were har-

vested, removed of extraneous tissues on the day 20. Half

of each tumor sample was used for OCT embedding and

Serial 5 lm-thick Cryostat sections were performed by

incubation with mAbs (PharMingen, San Diego, CA, USA)

recognizing CD11c? dendritic cells, CD4?Tcells, CD8?T

cells as well as Foxp3?Tregs. Isotype-matched antibodies

were used as a control. The remaining half was digested for

2 h at room temperature in 1 mg/ml type IV collagenase

(Sigma, USA) with constant stirring. Digested tumors were

passed through a 70 lm nylon mesh, washed once with

HBSS, and resuspended in PBS/3 % BSA to

*1 9 106 cells/ml. Polystyrene beads (15-lm diameter)

were added to the samples to achieve a concentration of

5 9 105 beads/ml. Samples were stained for the presence

of FITC-conjugated CD25, PE-conjugated antibodies CD4,

CD8, CD11c and Foxp3. Samples were analyzed by flow

cytometry analysis with counting of 50,000 lymphocyte-

sized events (based on splenocyte controls). The number of

infiltrating CD4? or CD8?cells was determined by the

following equation: (No of PE-events/No of bead

events) 9 5 9 5105 9 5 cell sample column.

Statistical analysis

Statistical analyses were performed with software from

SPSS 10.0 for Windows, Inc. (Chicago, IL). Results were

Fig. 2 rAAV induced potent

antitumor effect in vivo. a In

C57BL/6J mice and b nude

mice, the local expression of

SLC in tumor sites was

analyzed by Western-blot assay;

c, d SLC-producing tumors

showed a delayed progression

and restrained in tumor weight

when compared to rAAV-GFP

tumors. No difference was

observed between GFP-

expressing and mock

background tumors; e, f SLC-

production was also associated

with significantly improved

survival. There was a worse

survival in nude mice models,

compared with C57BL/6J mice

models. Bars SD, **p \ 0.01

compared with rAAV-GFP

group, *p \ 0.05 compared

with rAAV-SLC group; i.t.,

intra-tumor injection
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evaluated by Student’s t tests. A P value \ 0.05 was taken

as the level of significance.

Results

High transduction efficiency of liver cancer cells using

rAAV-SLC

AAV Help-Free System was used for the package of rAAV-

SLC. Firstly, the entire nucleotide sequence of SLC was

cloned into the MCS of the pAAV-IRES-hrGFP vector.

Positive clones was demonstrated by restriction digestion

and PCR, as shown in Fig. 1a–c. As followed, a new rAAV

2 encoding SLC peptide (rAAV-SLC) was successfully

packaged in AAV293 cells by three-plasmids co-transfec-

tion system, as shown in Fig. 1d, 72 h post-transfection, the

virus particles was harvested. Virus titer was 1.25 9 1011

analysed by Real-time PCR, which was used to infect He-

pal-6 cells later, with GFP as a marker of gene expression.

Hepal-6 cells are highly susceptible to rAAV-mediated

transduction. 2 h post-transfection the viral particles were

observed to shift toward the nucleus and begin to accu-

mulate at the nuclear envelope (Fig. 1e). 72 h post-trans-

fection, based on the expression the marker gene GFP, it

was found that about 50 % Hepal-6 tumor cells were

positive in showing the transduction efficiency (Fig. 1f).

There was no difference in transduction efficiency between

the rAAV-SLC and rAAV-GFP. The control groups of

single rAAV transduction have black background. The

expression of SLC and its bioactivities were demonstrated

in intro by ELISA and chemotaxis assay (Data not shown).

rAAV-SLC induced a potent anti-tumor effect

The local expression of SLC in tumor sites of tumor

bearing mice models were analyzed by Western-blot assay,

we found the local expression of SLC in the tumors

established from Hepal-6 cell lines previously transfected

by rAAV-SLC. There was lower level local expression of

SLC in the group of intra-tumor (i.t.) injection of rAAV-

SLC into established tumors, as shown in Fig. 2a, b. The

effect of rAAV-induced local expression SLC to enhance

antitumor immune responses was subsequently tested. To

elucidate in detail the mechanism of rAAV-SLC anti-tumor

effect, we also examined its effect in nude mice. SLC-

producing tumors showed an obviously delayed progres-

sion when compared to rAAV-GFP tumors (p \ 0.01).

rAAV-SLC had stronger anti-tumor effect compared with

i.t.rAAV-SLC treated group (p \ 0.05) in C57BL/6J mice.

No difference was observed between GFP-expressing and

normal background tumors, as shown in Fig. 2c, d. In

parallel to reduced growth, SLC local expression was also

associated with significantly improved survival as shown in

Fig. 2e, f. The development of tumors was faster in nude

mice than in C57BL/6J mice, and showed poorer survival.

Local expression of SLC promoted the recruitment

of T cells and DCs to the tumors in vivo

Because SLC is chemotactic for T cells and DCs, we

hypothesized that SLC expressed from tumor cells would

elicit migration of these cells to the tumor site. To quantify

the number of infiltrating CD4? and CD8?T cell lym-

phocytes as well as CD11c?DCs were determined by flow

cytometry and IHC analysis. These analysis illustrated that

SLC-expression induced significantly higher numbers of

CD4?, CD8?T cells and CD11c?DCs recruitment when

compared to control (p \ 0.01, as shown in Fig. 3). A

Fig. 3 The observed antitumor effect of rAAV-SLC was immune-

mediated. a The collected cells from tumor samples were stained

FITC-CD11c, FITC-CD3 together with PE-CD4 or PE-CD8 for flow

cytometric evaluation. Compared to control and rAAV-GFP, signif-

icantly higher numbers of CD11c?dendritic cells, CD4?T cells and

CD8?T cells infiltration in SLC-treated mice were observed. Bars

SD, *p \ 0.05, **p \ 0.01; i.t., intra-tumor injection; b serial 5 lm-

thick Cryostat sections of tumor samples were performed by

incubation with mAbs recognizing CD11c?dendritic cells, CD4?T

cells and CD8?T cells. Positive cells were detected by DAB staining
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modest increase in infiltrated immune cells was also

observed in rAAV-GFP pre-infected tumors.

Local expression of SLC also promoted higher

infiltration of CD25?Foxp3?regulatory T cells

(Tregs) in the tumor sites

In order to further explore the mechanism of SLC mediated

anti-tumor effect, infiltrated CD25?Foxp3?Tregs in the

tumor sites were also tested by FACS (Fig. 4a) and IHC

(Fig. 4b). There were more infiltrated Tregs in the groups

of SLC local expression (p \ 0.01).

Discussion

In several studies, cytokine genes have been introduced

into tumor cells in an attempt to provide a microenviron-

ment that favors innate and acquired immune mechanisms

to prevent or reverse tumor development [28]. In particular,

chemokine gene transfer offers the possibility to trigger the

recruitment of initiators or effectors of the immune

response within the tumor [29, 30]. The chemokine

m6Ckine/SLC has been proposed to play a role in favoring

the interactions between dendritic cells and T cells in

secondary lymphoid organs, through its interaction with the

CCR7 receptor [9, 12, 16, 31–33]. Previous works

demonstrated that SLC chemotactic activity for DCs and T

cells could be harnessed to generate antitumor immune

responses [20, 34–38]. Almost all of the past reports

showed that antitumor effect of SLC was mediated by

greatly enhancing the tumor infiltration of mature dendritic

cells and CD8?T cells [39–41].

We reasoned that such an activity would be additionally

improved by in situ activation of recruited DCs and T cells

via local expression of SLC. In this study, we applied

rAAV vector to deliver SLC directly into the tumor cells

for its broad host range, excellent safety profile, and the

ability to integrate into the host genome as well as long-

term expression in infected hosts [42, 43]. Different from

other reports [21, 34, 38, 44], we harnessed long-term local

elaboration of SLC in the tumor bed mediated by rAAV

vector to detect its antitumor effect. We have shown that

rAAV-SLC was more effective in generating systemic

antitumor responses and was accompanied by extensive

CD4?, CD8?T cells, as well as CD11c?DCs infiltrating

into the tumor sites. This is consistent with previous

studies. On the other hand, the results also suggest that

SLC local expression in tumor bed plays another role in

anti-tumor effect on destroying the solid tumor barrier by

infiltrating extensive lymphocytes. The ‘barrier’ formed

around solid tumors by infiltrating host stroma hinders the

presentation of tumor antigens in DLNs and, in the absence

of a robust co-stimulatory environment, specific T cells can

Fig. 4 More Foxp3?regulatory T cells (Tregs) in the tumor sites

were detected by FACS and IHC. a The collected cells from tumor

samples were stained with FITC-CD25, PE-Foxp3 for flow cytometric

evaluation of Tregs. Compared to control and rAAV-GFP, signifi-

cantly higher numbers of Treg cells infiltration in mice with rAAV-

SLC treatment. Bars SD, *p \ 0.05, **p \ 0.01; i.t., intra-tumor

injection. b For IHC analysis of regulatory T cells infiltration, tumors

cryostat sections were performed by incubation with mAbs recog-

nizing Foxp3. Positive cells were detected by DAB. More Foxp3

positive cells were found in the tumor sites of mice with rAAV-SLC

treatment

5620 Mol Biol Rep (2013) 40:5615–5623

123



remain ignorant [45, 46]. Additional obstacles for T cell

homing and expansion inside tumors may also prevent

tumor eradication [47]. Murine models have shown that

abundant, activated, tumor antigen–specific T cells fail to

reject tumors even when they can reject skin grafts or less

established tumors bearing the same antigen [48]. Thus, the

tumor barrier may be an important contributor to the failure

of tumor rejection. It is possible that the active recruitment

of naı̈ve T cells into tumors, followed by their activation

through robust co-stimulation and sufficient antigen load,

may overcome these obstacles in antitumor immunity.

However, we also found there was higher infiltration of

Foxp3? regulatory T cells (Tregs) mediated by rAAV-SLC

treatment. It has been thoroughly demonstrated that during

the tumor development, tumor microenvironment (such as

the secretion of TGF-b and IL-10) can educate T cells into

regulatory T cells (Treg) or more and more T cells became

ignorant. Tregs are identified as a small proportion of

CD4?T cells that highly express CD25 (IL-2R a-chain) on

their surface and specifically express Foxp3 [49–53]. These

CD4?CD25?Foxp3?Tregs act in a regulatory way by

suppressing the activation of other T cells and control the

immune responses induced by DCs in vivo [54, 55]. It has

especially been shown Tregs prevent CD8?T cell matu-

ration by inhibiting CD4?T cells in tumor sites [56].

Therefore, the infiltration of CD4?CD25?Foxp3?Tregs is

a major obstacle for developing effective antitumor treat-

ments. So in this study, the observed higher infiltration of

Tregs in tumor sites played an important role in the tam-

pered anti-tumor effect of SLC treatment. Further study is

followed.

In summary, our study indicates that mouse SLC gene

transferred into liver cancer cell line by rAAV has strong T

cell mediated anti-tumor effects. Our work also suggests a

comprehensive immune therapy strategy applicable for

solid tumors based on cooperative interaction of multiple

effector cell types including Tregs. This strategy may

overcome functional immune impairment observed in

patients with advanced malignancy.
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