5,533 research outputs found

    Spin-based quantum gating with semiconductor quantum dots by bichromatic radiation method

    Full text link
    A potential scheme is proposed for realizing a two-qubit quantum gate in semiconductor quantum dots. Information is encoded in the spin degrees of freedom of one excess conduction electron of each quantum dot. We propose to use two lasers, radiation two neighboring QDs, and tuned to blue detuning with respect to the resonant frequencies of individual excitons. The two-qubit phase gate can be achieved by means of both Pauli-blocking effect and dipole-dipole coupling between intermediate excitonic states.Comment: Europhysics Letters 66 (2004) 1

    Timing the millisecond pulsars in 47 Tucanae

    Get PDF
    In the last 10 years 20 millisecond pulsars have been discovered in the globular cluster 47 Tucanae. Hitherto, only 3 of these had published timing solutions. Here we improve upon these 3 and present 12 new solutions. These measurements can be used to determine a variety of physical properties of the pulsars and of the cluster. The 15 pulsars have positions determined with typical uncertianties of only a few milliarcsec and they are all located within 1.2 arcmin of the cluster centre. We have also measured the proper motions of 5 of the pulsars, which are consistent with the proper motion of 47 Tuc based on Hipparcos data. The period derivatives measured for many of the pulsars are dominated by the dynamical effects of the cluster gravitational field, and are used to constrain the surface mass density of the cluster. All pulsars have characteristic ages T > 170 Myr and magnetic fields B < 2.4e9 Gauss, and the average T > 1 Gyr. We have measured the rate of advance of periastron for the binary pulsar J0024-7204H, implying a total system mass 1.4+-0.8 solar masses.Comment: 17 pages, 11 included figures, accepted for publication in MNRA

    Non-linear matter power spectrum from Time Renormalisation Group: efficient computation and comparison with one-loop

    Full text link
    We address the issue of computing the non-linear matter power spectrum on mildly non-linear scales with efficient semi-analytic methods. We implemented M. Pietroni's Time Renormalization Group (TRG) method and its Dynamical 1-Loop (D1L) limit in a numerical module for the new Boltzmann code CLASS. Our publicly released module is valid for LCDM models, and optimized in such a way to run in less than a minute for D1L, or in one hour (divided by number of nodes) for TRG. A careful comparison of the D1L, TRG and Standard 1-Loop approaches reveals that results depend crucially on the assumed initial bispectrum at high redshift. When starting from a common assumption, the three methods give roughly the same results, showing that the partial resumation of diagrams beyond one loop in the TRG method improves one-loop results by a negligible amount. A comparison with highly accurate simulations by M. Sato & T. Matsubara shows that all three methods tend to over-predict non-linear corrections by the same amount on small wavelengths. Percent precision is achieved until k~0.2 h/Mpc for z>2, or until k~0.14 h/Mpc at z=1.Comment: 24 pages, 7 figures, revised title and conclusions, version accepted in JCAP, code available at http://class-code.ne

    Présence de chimiorécepteurs sur l'aile des tsé-tsé (Diptera : Glossinidae)

    Get PDF
    Cette note signale pour la première fois l'existence de chimiorécepteurs sur les ailes des mouches tsé-tsé. Ceux-ci sont principalement localisés sur le milieu de la nervure costale. Leur morphologie est comparable à celle des chimiorécepteurs observés sur les pattes. Leur nombre ne différe pas entre les sexes comme pour les pattes, mais entre les espèces. Ceci suggère un rôle dans la perception chimique proche de l'environnement, par rapport aux chimiorécepteurs des pattes qui semblent impliqués dans le comportement sexuel. L'étude a été conduite sur six espèces ou sous-espèces de glossines. (Résumé d'auteur

    Timing the Parkes Multibeam Pulsars

    Get PDF
    Measurement of accurate positions, pulse periods and period derivatives is an essential follow-up to any pulsar survey. The procedures being used to obtain timing parameters for the pulsars discovered in the Parkes multibeam pulsar survey are described. Completed solutions have been obtained so far for about 80 pulsars. They show that the survey is preferentially finding pulsars with higher than average surface dipole magnetic fields. Eight pulsars have been shown to be members of binary systems and some of the more interesting results relating to these are presented.Comment: 6 pages, 2 embedded EPS figures, to be published in proceedings of "Pulsar Astronomy - 2000 and Beyond", ASP Conf. Se

    The High Time Resolution Universe Survey - V: Single-pulse energetics and modulation properties of 315 pulsars

    Get PDF
    We report on the pulse-to-pulse energy distributions and phase-resolved modulation properties for catalogued pulsars in the southern High Time Resolution Universe intermediate-latitude survey. We selected the 315 pulsars detected in a single-pulse search of this survey, allowing a large sample unbiased regarding any rotational parameters of neutron stars. We found that the energy distribution of many pulsars is well-described by a log-normal distribution, with few deviating from a small range in log-normal scale and location parameters. Some pulsars exhibited multiple energy states corresponding to mode changes, and implying that some observed "nulling" may actually be a mode-change effect. PSRJ1900-2600 was found to emit weakly in its previously-identified "null" state. We found evidence for another state-change effect in two pulsars, which show bimodality in their nulling time scales; that is, they switch between a continuous-emission state and a single-pulse-emitting state. Large modulation occurs in many pulsars across the full integrated profile, with increased sporadic bursts at leading and trailing sub-beam edges. Some of these high-energy outbursts may indicate the presence of "giant pulse" phenomena. We found no correlation with modulation and pulsar period, age, or other parameters. Finally, the deviation of integrated pulse energy from its average value was generally quite small, despite the significant phase-resolved modulation in some pulsars; we interpret this as tenuous evidence of energy regulation between distinct pulsar sub-beams.Comment: Before full MNRAS publication, supplementary material is available temporarily at http://dl.dropbox.com/u/22076931/supplementary_material.pd

    PSR J1723-2837: An Eclipsing Binary Radio Millisecond Pulsar

    Full text link
    We present a study of PSR J1723-2837, an eclipsing, 1.86 ms millisecond binary radio pulsar discovered in the Parkes Multibeam survey. Radio timing indicates that the pulsar has a circular orbit with a 15 hr orbital period, a low-mass companion, and a measurable orbital period derivative. The eclipse fraction of ~15% during the pulsar's orbit is twice the Roche lobe size inferred for the companion. The timing behavior is significantly affected by unmodeled systematics of astrophysical origin, and higher-order orbital period derivatives are needed in the timing solution to account for these variations. We have identified the pulsar's (non-degenerate) companion using archival ultraviolet, optical, and infrared survey data and new optical photometry. Doppler shifts from optical spectroscopy confirm the star's association with the pulsar and indicate a pulsar-to-companion mass ratio of 3.3 +/- 0.5, corresponding to a companion mass range of 0.4 to 0.7 Msun and an orbital inclination angle range of between 30 and 41 degrees, assuming a pulsar mass range of 1.4-2.0 Msun. Spectroscopy indicates a spectral type of G for the companion and an inferred Roche-lobe-filling distance that is consistent with the distance estimated from radio dispersion. The features of PSR J1723-2837 indicate that it is likely a "redback" system. Unlike the five other Galactic redbacks discovered to date, PSR J1723-2837 has not been detected as a gamma-ray source with Fermi. This may be due to an intrinsic spin-down luminosity that is much smaller than the measured value if the unmeasured contribution from proper motion is large.Comment: 11 pages, including 8 figures and 5 tables. Accepted by the Astrophysical Journa
    corecore