223 research outputs found
Reconfigurable quantum metamaterials
By coupling controllable quantum systems into larger structures we introduce
the concept of a quantum metamaterial. Conventional meta-materials represent
one of the most important frontiers in optical design, with applications in
diverse fields ranging from medicine to aerospace. Up until now however,
metamaterials have themselves been classical structures and interact only with
the classical properties of light. Here we describe a class of dynamic
metamaterials, based on the quantum properties of coupled atom-cavity arrays,
which are intrinsically lossless, reconfigurable, and operate fundamentally at
the quantum level. We show how this new class of metamaterial could be used to
create a reconfigurable quantum superlens possessing a negative index gradient
for single photon imaging. With the inherent features of quantum superposition
and entanglement of metamaterial properties, this new class of dynamic quantum
metamaterial, opens a new vista for quantum science and technology.Comment: 16 pages, 8 figure
Green's function for metamaterial superlens: Evanescent wave in the image
We develop a new method to calculate the evanescent wave, the subdivided
evanescent waves (SEWs), and the radiative wave, which can be obtained by
separating the global field of the image of metamaterial superlens. The method
is based on Green's function, and it can be applied in other linear systems.
This study could help us to investigate the effect of evanescent wave on
metamaterial superlens directly, and give us a new way to design new devices.Comment: 15 pages, 3 figure
Emergent Phenomena Induced by Spin-Orbit Coupling at Surfaces and Interfaces
Spin-orbit coupling (SOC) describes the relativistic interaction between the
spin and momentum degrees of freedom of electrons, and is central to the rich
phenomena observed in condensed matter systems. In recent years, new phases of
matter have emerged from the interplay between SOC and low dimensionality, such
as chiral spin textures and spin-polarized surface and interface states. These
low-dimensional SOC-based realizations are typically robust and can be
exploited at room temperature. Here we discuss SOC as a means of producing such
fundamentally new physical phenomena in thin films and heterostructures. We put
into context the technological promise of these material classes for developing
spin-based device applications at room temperature
Absorption Enhancement in Lossy Transition Metal Elements of Plasmonic Nanosandwiches
Combination of catalytically active transition metals and surface plasmons offers a promising way to drive chemical reactions by converting incident visible light into energetic electron-hole pairs acting as a mediator. In such a reaction enhancement scheme, the conversion efficiency is dependent on light absorption in the metal. Hence, increasing absorption in the plasmonic structure is expected to increase generation of electron-hole pairs and, consequently, the reaction rate. Furthermore, the abundance of energetic electrons might facilitate new reaction pathways. In this work we discuss optical properties of homo- and heterometallic plasmonic nanosandwiches consisting of two parallel disks made of gold and palladium. We show how near-field coupling between the sandwich elements can be used to enhance absorption in one of them. The limits of this enhancement are investigated using finite-difference time-domain simulations. Physical insight is gained through a simple coupled dipole analysis of the nanostructure. For small palladium disks (compared to the gold disk), total absorption enhancement integrated over the near visible solar AM 1.5 spectrum is 8-fold, while for large palladium disks, similar in size to the gold one, it exceeds three
Tailoring interfacial effect in multilayers with Dzyaloshinskii-Moriya interaction by helium ion irradiation
We show a method to control magnetic interfacial effects in multilayers with Dzyaloshinskii–Moriya interaction (DMI) using helium (He+) ion irradiation. We report results from SQUID magnetometry, ferromagnetic resonance as well as Brillouin light scattering results on multilayers with DMI as a function of irradiation fluence to study the effect of irradiation on the magnetic properties of the multilayers. Our results show clear evidence of the He+irradiation effects on the magnetic properties which is consistent with interface modification due to the effects of the He+ irradiation. This external degree of freedom offers promising perspectives to further improve the control of magnetic skyrmions in multilayers, that could push them towards integration in future technologies
Controlling spin pumping into superconducting Nb by proximity-induced spin-triplet Cooper pairs
Proximity-induced long-range spin-triplet supercurrents, important for the field of superconducting spintronics, are generated in superconducting/ferromagnetic heterostructures when interfacial magnetic inhomogeneities responsible for spin mixing and spin flip scattering are present. The multilayer stack Nb/Cr/Fe/Cr/Nb has been shown to support such currents when fabricated into Josephson junction devices. However, creating pure spin currents controllably in superconductors outside of the Josephson junction architecture is a bottleneck to progress. Recently, ferromagnetic resonance was proposed as a possible direction, the signature of pure supercurrent creation being an enhancement of the Gilbert damping below the superconducting critical temperature, but the necessary conditions are still poorly established. Here, we demonstrate that pumping pure spin currents into a superconductor in the presence of an external magnetic field is only possible when conditions supporting proximity-induced spin-triplet effects are satisfied. Our study is an important step forward for pure spin supercurrent creation, considerably advancing the field of superconducting spintronics
Near-field magneto-caloritronic nanoscopy on ferromagnetic nanostructures
Near-field optical microscopy by means of infrared photocurrent mapping has rapidly developed in recent years. In this letter we introduce a near-field
induced contrast mechanism arising when a conducting surface, exhibiting a
magnetic moment, is exposed to a nanoscale heat source. The
magneto-caloritronic response of the sample to near-field excitation of a
localized thermal gradient leads to a contrast determined by the local state of magnetization. By comparing the measured electric response of a magnetic reference sample with numerical simulations we derive an estimate of the field enhancement and the corresponding temperature profile induced on the sample surface.This work was supported by the Deutsche Forschungsgemeinschaft through grant HE 2063/5-1 to JH. The work also received funding from the ERC synergy grant No. 61011
- …
