985 research outputs found
MicroTCA implementation of synchronous Ethernet-Based DAQ systems for large scale experiments
Large LAr TPCs are among the most powerful detectors to address open problems
in particle and astro-particle physics, such as CP violation in leptonic
sector, neutrino properties and their astrophysical implications, proton decay
search etc. The scale of such detector implies severe constraints on their
readout and DAQ system. In this article we describe a data acquisition scheme
for this new generation of large detectors. The main challenge is to propose a
scalable and easy to use solution able to manage a large number of channels at
the lowest cost. It is interesting to note that these constraints are very
similar to those existing in Network Telecommunication Industry. We propose to
study how emerging technologies like ATCA and TCA could be used in
neutrino experiments. We describe the design of an Advanced Mezzanine Board
(AMC) including 32 ADC channels. This board receives 32 analogical channels at
the front panel and sends the formatted data through the TCA backplane
using a Gigabit Ethernet link. The gigabit switch of the MCH is used to
centralize and to send the data to the event building computer. The core of
this card is a FPGA (ARIA-GX from ALTERA) including the whole system except the
memories. A hardware accelerator has been implemented using a NIOS II P
and a Gigabit MAC IP. Obviously, in order to be able to reconstruct the tracks
from the events a time synchronisation system is mandatory. We decided to
implement the IEEE1588 standard also called Precision Timing Protocol, another
emerging and promising technology in Telecommunication Industry. In this
article we describe a Gigabit PTP implementation using the recovered clock of
the gigabit link. By doing so the drift is directly cancelled and the PTP will
be used only to evaluate and to correct the offset.Comment: Talk presented at the 2009 Real Time Conference, Beijing, May '09,
submitted to the proceeding
Inter-laboratory synchronization for the CNGS project
JACoW web site http://accelconf.web.cern.ch/AccelConf/e06International audienceCERN will start sending a neutrino beam to Gran Sasso National Laboratory in Italy in July 2006. This beam will cover a distance of around 730 km through the crust of the earth from an extraction line in CERN's SPS to dedicated detectors in Gran Sasso. This paper describes the technological choices made to fulfill the specification of inter-laboratory synchronization in the region of 100 ns, as well as some preliminary results. The common time standard is UTC as disseminated by the GPS system, and the techniques are similar to those used by national metrology laboratories for the manufacturing of UTC itself. In addition, real-time messages sent through the Internet allow the detectors in Gran Sasso to go into calibration mode when no beam is being sent. Data concerning the delay and determinism of this international network link is also presented
The neutrino velocity anomaly as an explanation of the missing observation of neutrinos in coincidence with GRB
The search for neutrinos emitted in coincidence with Gamma-Bay Burst has been
so far unsuccessfully. In this paper we show that the recent result reported by
the OPERA Collaboration on an early arrival time of muon neutrinos with respect
to the one computed assuming the speed of light in vacuum could explain the
null search for neutrinos in coincidence with Gamma-Ray Burst
On the Role of Low-Energy CP Violation in Leptogenesis
The link between low-energy CP violation and leptogenesis became more
accessible with the understanding of flavor effects. However, a definite
well-motivated model where such a link occurs was still lacking. Adjoint SU(5)
is a simple grand unified theory where neutrino masses are generated through
the Type I and Type III seesaw mechanisms, and the lepton asymmetry is
generated by the fermionic triplet responsible for the Type III seesaw. We
focus exclusively on the case of inverted hierarchy for neutrinos, and we show
that successful flavored leptogenesis in this theory strongly points towards
low-energy CP violation. Moreover, since the range of allowed masses for the
triplet is very restricted, we find that the discovery at the LHC of new states
present in the theory, together with proton decay and unification of gauge
couplings, can conspire to provide a hint in favor of leptogenesis.Comment: 12 pages, 6 figure
Clone flow analysis for a theory inspired Neutrino Experiment planning
The presence of several clone solutions in the simultaneous measurement of
() has been widely discussed in literature. In this letter
we write the analytical formulae of the clones location in the
() plane as a function of the physical input pair
(). We show how the clones move with changing
. The "clone flow" can be significantly different if computed
(naively) from the oscillation probabilities or (exactly) from the
probabilities integrated over the neutrino flux and cross-section.
Using our complete computation we compare the clone flow of a set of possible
future neutrino experiments: the CERN SuperBeam, BetaBeam and Neutrino Factory
proposals. We show that the combination of these specific BetaBeam and
SuperBeam does not help in solving the degeneracies. On the contrary, the
combination of one of them with the Neutrino Factory Golden and Silver channel
can be used, from a theoretical point of view, to solve completely the
eightfold degeneracy.Comment: 23 pages, using epsfi
Measurement of the two-photon absorption cross-section of liquid argon with a time projection chamber
This paper reports on laser-induced multiphoton ionization at 266 nm of
liquid argon in a time projection chamber (LAr TPC) detector. The electron
signal produced by the laser beam is a formidable tool for the calibration and
monitoring of next-generation large-mass LAr TPCs. The detector that we
designed and tested allowed us to measure the two-photon absorption
cross-section of LAr with unprecedented accuracy and precision:
sigma_ex=(1.24\pm 0.10stat \pm 0.30syst) 10^{-56} cm^4s{-1}.Comment: 15 pages, 9 figure
Testing whether muon neutrino flavor mixing is maximal
The small difference between the survival probabilities of muon neutrino and
antineutrino beams, traveling through earth matter in a long baseline
experiment such as MINOS, is shown to be an important measure of any possible
deviation from maximality in the flavor mixing of those states.Comment: Some revision has been made in the experimental discussions with two
new figures replacing the old ones and a clarification of the accuracy of the
perturbative result has been included. This version will be published in
Physical Review Letters. Title changed as asked by the editors of Physical
Review Letter
Inclusive production of and mesons in charged current interactions
The inclusive production of the meson resonances ,
and in neutrino-nucleus charged current interactions has been
studied with the NOMAD detector exposed to the wide band neutrino beam
generated by 450 GeV protons at the CERN SPS. For the first time the
meson is observed in neutrino interactions. The statistical
significance of its observation is 6 standard deviations. The presence of
in neutrino interactions is reliably established. The average
multiplicity of these three resonances is measured as a function of several
kinematic variables. The experimental results are compared to the
multiplicities obtained from a simulation based on the Lund model. In addition,
the average multiplicity of in antineutrino - nucleus
interactions is measured.Comment: 23 pages, 14 figures, 8 tables. To appear in Nucl. Phys.
First Year of Physics at CNGS
The CNGS facility (CERN Neutrinos to Gran Sasso) aims at directly detecting νμ→ντ neutrino oscillations [1]. An intense νμ beam (1017 νμ per day) is generated at CERN and directed over 732 km towards the Gran Sasso National Laboratory, LNGS, in Italy, where two large and complex detectors, OPERA and ICARUS, are located. Having resolved successfully some initial issues that occurred since its commissioning in 2006, that will be briefly summarized here, the facility had its first complete year of physics with 1.78×1019 protons extracted towards CNGS. The experiences gained in operating this 500 kW neutrino beam facility along with highlights of the beam performance in 2008 are discussed
- …
