1,182 research outputs found
Representing the Australian Heat Low in a GCM Using Different Surface and Cloud Schemes
The high insolation during the Southern Hemisphere summer leads to the development of a heat low over north-west Australia, which is a significant feature of the monsoon circulation. It is therefore important that General Circulation Models (GCMs) are able to represent this feature well in order to adequately represent the Australian Monsoon. Given that there are many different configurations of GCMs used globally (such as those used as part of the Coupled Model Intercomparison Project), it is difficult to assess the underlying causes of the differences in circulation between such GCMs. In order to address this problem, the work presented here makes use of three different configurations of the Australian Community Climate and Earth System Simulator (ACCESS). The configurations incorporate changes to the surface parameterization, cloud parameterization, and both together (surface and cloud) while keeping all other parameterized processes unchanged. The work finds that the surface scheme has a larger impact on the heat low than the cloud scheme, which is caused by differences in the soil thermal inertia. This study also finds that the differences in the circulation caused by changing the cloud and surface schemes together are the linear sum of the individual perturbations (i.e., no nonlinear interaction)
Composite absorbing potentials
The multiple scattering interferences due to the addition of several
contiguous potential units are used to construct composite absorbing potentials
that absorb at an arbitrary set of incident momenta or for a broad momentum
interval.Comment: 9 pages, Revtex, 2 postscript figures. Accepted in Phys. Rev. Let
Doubly forbidden second-harmonic generation from isotropic suspensions: Studies on the purple membrane of Halobacteriumhalobium
Quantum Time and Spatial Localization: An Analysis of the Hegerfeldt Paradox
Two related problems in relativistic quantum mechanics, the apparent
superluminal propagation of initially localized particles and dependence of
spatial localization on the motion of the observer, are analyzed in the context
of Dirac's theory of constraints. A parametrization invariant formulation is
obtained by introducing time and energy operators for the relativistic particle
and then treating the Klein-Gordon equation as a constraint. The standard,
physical Hilbert space is recovered, via integration over proper time, from an
augmented Hilbert space wherein time and energy are dynamical variables. It is
shown that the Newton-Wigner position operator, being in this description a
constant of motion, acts on states in the augmented space. States with strictly
positive energy are non-local in time; consequently, position measurements
receive contributions from states representing the particle's position at many
times. Apparent superluminal propagation is explained by noting that, as the
particle is potentially in the past (or future) of the assumed initial place
and time of localization, it has time to propagate to distant regions without
exceeding the speed of light. An inequality is proven showing the Hegerfeldt
paradox to be completely accounted for by the hypotheses of subluminal
propagation from a set of initial space-time points determined by the quantum
time distribution arising from the positivity of the system's energy. Spatial
localization can nevertheless occur through quantum interference between states
representing the particle at different times. The non-locality of the same
system to a moving observer is due to Lorentz rotation of spatial axes out of
the interference minimum.Comment: This paper is identical to the version appearing in J. Math. Phys.
41; 6093 (Sept. 2000). The published version will be found at
http://ojps.aip.org/jmp/. The paper (40 page PDF file) has been completely
revised since the last posting to this archiv
Real clocks and the Zeno effect
Real clocks are not perfect. This must have an effect in our predictions for
the behaviour of a quantum system, an effect for which we present a unified
description encompassing several previous proposals. We study the relevance of
clock errors in the Zeno effect, and find that generically no Zeno effect can
be present (in such a way that there is no contradiction with currently
available experimental data). We further observe that, within the class of
stochasticities in time addressed here, there is no modification in emission
lineshapes.Comment: 12 a4 pages, no figure
Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation
Recent advances in quantum information processing with trapped ions have
demonstrated the need for new ion trap architectures capable of holding and
manipulating chains of many (>10) ions. Here we present the design and detailed
characterization of a new linear trap, microfabricated with scalable
complementary metal-oxide-semiconductor (CMOS) techniques, that is well-suited
to this challenge. Forty-four individually controlled DC electrodes provide the
many degrees of freedom required to construct anharmonic potential wells,
shuttle ions, merge and split ion chains, precisely tune secular mode
frequencies, and adjust the orientation of trap axes. Microfabricated
capacitors on DC electrodes suppress radio-frequency pickup and excess
micromotion, while a top-level ground layer simplifies modeling of electric
fields and protects trap structures underneath. A localized aperture in the
substrate provides access to the trapping region from an oven below, permitting
deterministic loading of particular isotopic/elemental sequences via
species-selective photoionization. The shapes of the aperture and
radio-frequency electrodes are optimized to minimize perturbation of the
trapping pseudopotential. Laboratory experiments verify simulated potentials
and characterize trapping lifetimes, stray electric fields, and ion heating
rates, while measurement and cancellation of spatially-varying stray electric
fields permits the formation of nearly-equally spaced ion chains.Comment: 17 pages (including references), 7 figure
Loading of a surface-electrode ion trap from a remote, precooled source
We demonstrate loading of ions into a surface-electrode trap (SET) from a
remote, laser-cooled source of neutral atoms. We first cool and load
neutral Sr atoms into a magneto-optical trap from an oven that
has no line of sight with the SET. The cold atoms are then pushed with a
resonant laser into the trap region where they are subsequently photoionized
and trapped in an SET operated at a cryogenic temperature of 4.6 K. We present
studies of the loading process and show that our technique achieves ion loading
into a shallow (15 meV depth) trap at rates as high as 125 ions/s while
drastically reducing the amount of metal deposition on the trap surface as
compared with direct loading from a hot vapor. Furthermore, we note that due to
multiple stages of isotopic filtering in our loading process, this technique
has the potential for enhanced isotopic selectivity over other loading methods.
Rapid loading from a clean, isotopically pure, and precooled source may enable
scalable quantum information processing with trapped ions in large, low-depth
surface trap arrays that are not amenable to loading from a hot atomic beam
A measurement-based approach to quantum arrival times
For a quantum-mechanically spread-out particle we investigate a method for
determining its arrival time at a specific location. The procedure is based on
the emission of a first photon from a two-level system moving into a
laser-illuminated region. The resulting temporal distribution is explicitly
calculated for the one-dimensional case and compared with axiomatically
proposed expressions. As a main result we show that by means of a deconvolution
one obtains the well known quantum mechanical probability flux of the particle
at the location as a limiting distribution.Comment: 11 pages, 4 figures, submitted to Phys. Rev.
- …
