19 research outputs found

    Transcriptomic profiling of calcified aortic valves in clonal hematopoiesis of indeterminate potential carriers

    Get PDF
    Clonal hematopoiesis of indeterminate potential (CHIP) is characterized by the presence of clones of mutated blood cells without overt blood diseases. In the last few years, it has emerged that CHIP is associated with atherosclerosis and coronary calcification and that it is an independent determinant of cardiovascular mortality. Recently, CHIP has been found to occur frequently in patients with calcific aortic valve disease (CAVD) and it is associated with a poor prognosis after valve replacement. We assessed the frequency of CHIP by DNA sequencing in the blood cells of 168 CAVD patients undergoing surgical aortic valve replacement or transcatheter aortic valve implantation and investigated the effect of CHIP on 12 months survival. To investigate the pathological process of CAVD in CHIP carriers, we compared by RNA-Seq the aortic valve transcriptome of patients with or without CHIP and non-calcific controls. Transcriptomics data were validated by immunohistochemistry on formalin-embedded aortic valve samples. We confirm that CHIP is common in CAVD patients and that its presence is associated with higher mortality following valve replacement. Additionally, we show, for the first time, that CHIP is often accompanied by a broad cellular and humoral immune response in the explanted aortic valve. Our results suggest that an excessive inflammatory response in CHIP patients may be related to the onset and/or progression of CAVD and point to B cells as possible new effectors of CHIP-induced inflammation

    Generation and characterization of BDNF knock-out in zebrafish by CRISPR/Cas9 system

    No full text
    BDNF is one of the main neurotrophin (NT) expressed in the brain as well in some peripheral sensory neurons. The important role played by BDNF is demonstrated by its well-established effects on axon growth, synaptic plasticity and, not less important, in processes of learning and memory. Moreover, BDNF is becoming a valid candidate for treatment of neurodegenerative disorders such as epileptic seizures, anxiety and depression or Alzheimer's and Parkinson's diseases. However, unless the huge number of studies performed about its role, some points remain controversial and the whole scenario is still far from be fully delineated. Most of the information we currently have about BDNF function derive from studies in mice but, in this case, the major obstacle is represented by the early postnatal lethality of BDNF-/- and, as consequence, all the results are limited to BDNF+/- animals. The main objective of this PhD thesis was the generation of a BDNF knock-out line in zebrafish through the CRISPR/Cas9 technology and the characterization of the mutant phenotype from both molecular and behavioural points of view. My results show that zebrafish BDNF-/-, unlike from what happens in mouse, survive after birth with undetectable levels of BDNF protein and does not present any mutation in undesirable off-target gene. Behavioural test through larvae monitoring reveals a significantly lower activity, suggestive of reduced exploratory behaviour, while several anomalies such as aberrant pharyngeal arches formation or increasing of apoptotic cells underline the complex role played by BDNF and its implication in a variety of biological processes. Differential transcriptomic analysis between mutant and wild type has been also performed in order to identify downstream target gene regulated by BDNF. The ongoing analysis of the RNA-Seq data will provide new insights on the role played by BDNF during the development of the nervous system. Finally, the zebrafish knock-out line also provides a promising tool in terms of diagnosis and treatment of neurodegenerative diseases in which this important NT is implicated

    Loss of circadian rhythmicity in bdnf knockout zebrafish larvae

    Get PDF
    Brain-derived neurotrophic factor (BDNF) plays a pivotal role in neuronal growth and differentiation, neuronal plasticity, learning, and memory. Using CRISPR/Cas9 technology, we generated a vital Bdnf null mutant line in zebrafish and carried out its molecular and behavioral characterization. Although no defects are evident on a morphological inspection, 66% of coding genes and 37% of microRNAs turned out to be differentially expressed in bdnf−/− compared with wild type sibling embryos. We deeply investigated the circadian clock pathway and confirmed changes in the rhythmic expression of clock (arntl1a, clock1a and clock2) and clock-controlled (aanat2) genes. The modulatory role of Bdnf on the zebrafish circadian clock was then validated by behavioral tests highlighting the absence of circadian activity rhythms in bdnf−/− larvae. The circadian behavior was partially rescued by pharmacological treatment. The bdnf−/− zebrafish line presented here is the first valuable and stable vertebrate model for the study of BDNF-related neurodevelopmental disease

    Molecular and Functional Characterization of the Somatic PIWIL1/piRNA Pathway in Colorectal Cancer Cells

    No full text
    PIWI-like (PIWIL) proteins and small non-coding piRNAs, involved in genome regulation in germline cells, are found aberrantly expressed in human tumors. Gene expression data from The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression (GTEx) project, and the European Genome-Phenome Archive (EGA) indicate that the PIWIL1 gene is ectopically activated in a significant fraction of colorectal cancers (CRCs), where this is accompanied by promoter demethylation, together with germline factors required for piRNA production. Starting from this observation, the PIWIL/piRNA pathway was studied in detail in COLO 205 CRC cells, which express significant levels of this protein, to investigate role and significance of ectopic PIWIL1 expression in human tumors. RNA sequencing and cell and computational biology led to the demonstration that PIWIL1 localizes in a nuage-like structure located in the perinuclear region of the cell and that a significant fraction of the piRNAs expressed in these cells are methylated, and, therefore, present in an active form. This was further supported by RNA immunoprecipitation, which revealed how several piRNAs can be found loaded into PIWIL1 to form complexes also comprising their target mRNAs. The mature transcripts associated with the PIWIL-piRNA complex encode key regulatory proteins involved in the molecular mechanisms sustaining colorectal carcinogenesis, suggesting that the PIWI/piRNA pathway may actively contribute to the establishment and/or maintenance of clinico-pathological features of CRCs

    HOME-BIO (sHOtgun MEtagenomic analysis of BIOlogical entities): a specific and comprehensive pipeline for metagenomic shotgun sequencing data analysis

    No full text
    Next-Generation-Sequencing (NGS) enables detection of microorganisms present in biological and other matrices of various origin and nature, allowing not only the identification of known phyla and strains but also the discovery of novel ones. The large amount of metagenomic shotgun data produced by NGS require comprehensive and user-friendly pipelines for data analysis, that speed up the bioinformatics steps, relieving the users from the need to manually perform complex and time-consuming tasks

    miR-181a/b control the assembly of visual circuitry by regulating retinal axon specification and growth

    Full text link
    Connectivity and function of neuronal circuitry require the correct specification and growth of axons and dendrites. Here, we identify the microRNAs miR-181a and miR-181b as key regulators of retinal axon specification and growth. Loss of miR-181a/b in medaka fish (Oryzias latipes) failed to consolidate amacrine cell processes into axons and delayed the growth of retinal ganglion cell (RGC) axons. These alterations were accompanied by defects in visual connectivity and function. We demonstrated that miR-181a/b exert these actions through negative modulation of MAPK/ERK signaling that in turn leads to RhoA reduction and proper neuritogenesis in both amacrine cells and RGCs via local cytoskeletal rearrangement. Our results identify a new pathway for axon specification and growth unraveling a crucial role of miR-181a/b in the proper establishment of visual system connectivity and function

    A ZFYVE19 gene mutation associated with neonatal cholestasis and cilia dysfunction: case report with a novel pathogenic variant

    No full text
    BACKGROUND: ZFYVE19 (Zinc Finger FYVE-Type Containing 19) mutations have most recently been associated to a novel type of high gamma-glutamyl transpeptidase (GGT), non-syndromic, neonatal-onset intrahepatic chronic cholestasis possibly associated to cilia dysfunction. Herein, we report a new case with further studies of whole exome sequencing (WES) and immunofluorescence in primary cilia of her cultured fibroblasts which confirm the observation.RESULTS: A now 5-year-old girl born to clinically healthy consanguineous Moroccan parents was assessed at 59days of life due to severe cholestatic jaundice with increased serum bile acids and GGT, and preserved hepatocellular synthetic function. Despite fibrosis/cirrhosis and biliary ducts proliferation on liver biopsy suggested an extrahepatic biliary obstacle, normal intra-operatory cholangiography excluded biliary atresia. Under choleretic treatment, she maintained a clinically stable anicteric cholestasis but developped hyperlipidemia. After exclusion of the main causes of cholestasis by multiple tests, abnormal concentrations of sterols and WES led to a diagnosis of hereditary sitosterolemia (OMIM #618666), likely unrelated to her cholestasis. Further sequencing investigation revealed a homozygous non-sense mutation (p.Arg223Ter) in ZFYVE19 leading to a 222 aa truncated protein and present in both heterozygous parents. Immunofluorescence analysis of primary cilia on cultured skin fibroblasts showed a ciliary phenotype mainly defined by fragmented cilia and centrioles abnormalities.CONCLUSIONS: Our findings are consistent with and expands the recent evidence linking ZFYVE19 to a novel, likely non-syndromic, high GGT-PFIC phenotype with neonatal onset. Due to the possible role of ZFYVE19 in cilia function and the unprecedented coexistence of a coincidental hereditary sterol disorder in our case, continuous monitoring will be necessary to substantiate type of liver disease progression and/or possible emergence of a multisystemic involvement. What mentioned above confirms that the application of WES in children with undiagnosed cholestasis may lead to the identification of new causative genes, widening the knowledge on the pathophysiology

    Insights into the Role of Estrogen Receptor β in Triple-Negative Breast Cancer

    No full text
    Estrogen receptors (ERα and ERβ) are ligand-activated transcription factors that play different roles in gene regulation and show both overlapping and specific tissue distribution patterns. ERβ, contrary to the oncogenic ERα, has been shown to act as an oncosuppressor in several instances. However, while the tumor-promoting actions of ERα are well-known, the exact role of ERβ in carcinogenesis and tumor progression is not yet fully understood. Indeed, to date, highly variable and even opposite effects have been ascribed to ERβ in cancer, including for example both proliferative and growth-inhibitory actions. Recently ERβ has been proposed as a potential target for cancer therapy, since it is expressed in a variety of breast cancers (BCs), including triple-negative ones (TNBCs). Because of the dependence of TNBCs on active cellular signaling, numerous studies have attempted to unravel the mechanism(s) behind ERβ-regulated gene expression programs but the scenario has not been fully revealed. We comprehensively reviewed the current state of knowledge concerning ERβ role in TNBC biology, focusing on the different signaling pathways and cellular processes regulated by this transcription factor, as they could be useful in identifying new diagnostic and therapeutic approaches for TNBC

    Functional Relationships between Long Non-Coding RNAs and Estrogen Receptor Alpha: A New Frontier in Hormone-Responsive Breast Cancer Management

    No full text
    : In the complex and articulated machinery of the human genome, less than 2% of the transcriptome encodes for proteins, while at least 75% is actively transcribed into non-coding RNAs (ncRNAs). Among the non-coding transcripts, those ≥200 nucleotides long (lncRNAs) are receiving growing attention for their involvement in human diseases, particularly cancer. Genomic studies have revealed the multiplicity of processes, including neoplastic transformation and tumor progression, in which lncRNAs are involved by regulating gene expression at epigenetic, transcriptional, and post-transcriptional levels by mechanism(s) that still need to be clarified. In breast cancer, several lncRNAs were identified and demonstrated to have either oncogenic or tumor-suppressive roles. The functional understanding of the mechanisms of lncRNA action in this disease could represent a potential for translational applications, as these molecules may serve as novel biomarkers of clinical use and potential therapeutic targets. This review highlights the relationship between lncRNAs and the principal hallmark of the luminal breast cancer phenotype, estrogen receptor α (ERα), providing an overview of new potential ways to inhibit estrogenic signaling via this nuclear receptor toward escaping resistance to endocrine therapy
    corecore