413 research outputs found

    Tyr682 in the Aβ-precursor protein intracellular domain regulates synaptic connectivity, cholinergic function, and cognitive performance.

    Get PDF
    Processing of Aβ-precursor protein (APP) plays an important role in Alzheimer's disease (AD) pathogenesis. The APP intracellular domain contains residues important in regulating APP function and processing, in particular the 682YENPTY687 motif. To dissect the functions of this sequence in vivo, we created an APP knock-in allele mutating Y682 to Gly (APP(YG/YG) mice). This mutation alters the processing of APP and TrkA signaling and leads to postnatal lethality and neuromuscular synapse defects when expressed on an APP-like protein 2 KO background. This evidence prompted us to characterize further the APP(YG/YG) mice. Here, we show that APP(YG/YG) mice develop aging-dependent decline in cognitive and neuromuscular functions, a progressive reduction in dendritic spines, cholinergic tone, and TrkA levels in brain regions governing cognitive and motor functions. These data are consistent with our previous findings linking NGF and APP signaling and suggest a causal relationship between altered synaptic connectivity, cholinergic tone depression and TrkA signaling deficit, and cognitive and neuromuscular decline in APP(YG/YG) mice. The profound deficits caused by the Y682 mutation underscore the biological importance of APP and indicate that APP(YG/YG) are a valuable mouse model to study APP functions in physiological and pathological processes

    CD74 interacts with APP and suppresses the production of Aβ

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Alzheimer disease (AD) is characterized by senile plaques, which are mainly composed of β amyloid (Aβ) peptides. Aβ is cleaved off from amyloid precursor protein (APP) with consecutive proteolytic processing by β-secretase and γ-secretase.</p> <p>Results</p> <p>Here, we show that CD74, the invariant chain of class II major histocompatibility complex, interacts with APP and serves as a negative regulator of Aβ. CD74 resembles other APP interacters such as BRI2 and BRI3, since all of them reduce the level of Aβ. However, unlike BRIs, CD74 does not reduce the secretion of sAPPα or sAPPβ. Interestingly, in HeLa cells, over expression of CD74 steers APP, but not Notch, to large vacuoles created by CD74.</p> <p>Conclusion</p> <p>Taken together, we propose that CD74 inhibits Aβ production by interacting with and derailing normal trafficking of APP.</p

    The interactome of the amyloid β precursor protein family members is shaped by phosphorylation of their intracellular domains

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brain tissue from patients with Alzheimer's disease has shown an increase of phosphorylation of Tyr-682, located on the conserved Y682ENPTY motif, and Thr-668 residues, both in the intracellular domain (AID) of amyloid β precursor protein (APP), although the role of these two residues is not yet known.</p> <p>Results</p> <p>Here, we report that the phosphorylation status of Tyr-682, and in some cases Thr-668, shapes the APP interactome. It creates a docking site for SH2-domain containing proteins, such as ShcA, ShcB, ShcC, Grb7, Grb2, as well as adapter proteins, such as Crk and Nck, that regulate important biological processes, cytosolic tyrosine kinases, such as Abl, Lyn and Src, which regulate signal transduction pathways, and enzymes that control phosphatidylinositols levels and signaling, such as PLC-γ. At the same time, it either reduces (like for JIP1, NUMB, NUMBL and ARH) or abolishes (like for Fe65, Fe65L1 and Fe65L2) binding of other APP interactors. Phosphorylation of Thr-668, unlike Tyr-682, does not seem to affect APP's ability to interact with the various proteins, with Pin1 and X11 being the exclusions. We also found that there are some differences between the interactions to AID and to ALID1 and ALID2, its two homologues.</p> <p>Conclusion</p> <p>Our data indicates that APP can regulate diverse cellular processes and that, vice versa, a network of signaling events can impact APP processing. Our results also suggest that phosphorylation of the APP Intracellular Domain will dramatically shape the APP interactome and, consequently, will regulate APP processing, APP transport and APP/AID-mediated functions.</p

    Impact of the Secretome of Human Mesenchymal Stem Cells on Brain Structure and Animal behavior in a Rat Model of Parkinson’s Disease

    Get PDF
    Research in the last decade strongly suggests that mesenchymal stem cell (MSC)-mediated therapeutic benefits are mainly due to their secretome, which has been proposed as a possible therapeutic tool for the treatment of Parkinson's disease (PD). Indeed, it has been shown that the MSC secretome increases neurogenesis and cell survival, and has numerous neuroprotective actions under different conditions. Additionally, using dynamic culturing conditions (through computer-controlled bioreactors) can further modulate the MSC secretome, thereby generating a more potent neurotrophic factor cocktail (i.e., conditioned medium). In this study, we have characterized the MSC secretome by proteomic-based analysis, investigating its therapeutic effects on the physiological recovery of a 6-hydroxidopamine (6-OHDA) PD rat model. For this purpose, we injected MSC secretome into the substantia nigra (SNc) and striatum (STR), characterizing the behavioral performance and determining histological parameters for injected animals versus untreated groups. We observed that the secretome potentiated the increase of dopaminergic neurons (i.e., tyrosine hydroxylase-positive cells) and neuronal terminals in the SNc and STR, respectively, thereby supporting the recovery observed in the Parkinsonian rats' motor performance outcomes (assessed by rotarod and staircase tests). Finally, proteomic characterization of the MSC secretome (through combined mass spectrometry analysis and Bioplex assays) revealed the presence of important neuroregulatory molecules, namely cystatin C, glia-derived nexin, galectin-1, pigment epithelium-derived factor, vascular endothelial growth factor, brain-derived neurotrophic factor, interleukin-6, and glial cell line-derived neurotrophic factor. Overall, we concluded that the use of human MSC secretome alone was able to partially revert the motor phenotype and the neuronal structure of 6-OHDA PD animals. This indicates that the human MSC secretome could represent a novel therapeutic for the treatment of PD.Portuguese Foundation for Science and Technology via a Ciência 2007 program and an FCT (Portuguese Foundation for Science and Technology) Investigator development grant (A.J.S.), predoctoral fellowships to F.G.T. (SFRH/69637/2010), and a fellowship to S.A. (SFRH/BD/81495/2011); a Canada Research Chair in Biomedical Engineering (L.A.B.) and a Schulich School of Engineering postdoctoral fellowship (K.M.P.), cofunded by Programa Operacional Regional do Norte (ON.2 – O Novo Norte), under Quadro de Referência Estratégico Nacional (QREN), through Fundo Europeu de Desenvolvimento Regional (FEDER), PEst-C/SAU/LA0001/2013-2014, cofunded by the Programa Operacional Factores de Competitividade, QREN, the European Union (FEDER), and by The National Mass Spectrometry Network under the contract REDE/1506/REM/2005info:eu-repo/semantics/publishedVersio
    corecore