241 research outputs found
Safety verification of asynchronous pushdown systems with shaped stacks
In this paper, we study the program-point reachability problem of concurrent
pushdown systems that communicate via unbounded and unordered message buffers.
Our goal is to relax the common restriction that messages can only be retrieved
by a pushdown process when its stack is empty. We use the notion of partially
commutative context-free grammars to describe a new class of asynchronously
communicating pushdown systems with a mild shape constraint on the stacks for
which the program-point coverability problem remains decidable. Stacks that fit
the shape constraint may reach arbitrary heights; further a process may execute
any communication action (be it process creation, message send or retrieval)
whether or not its stack is empty. This class extends previous computational
models studied in the context of asynchronous programs, and enables the safety
verification of a large class of message passing programs
Beam profile investigation of the new collimator system for the J-PET detector
Jagiellonian Positron Emission Tomograph (J-PET) is a multi-purpose detector
which will be used for search for discrete symmetries violations in the decays
of positronium atoms and for investigations with positronium atoms in
life-sciences and medical diagnostics. In this article we present three methods
for determination of the beam profile of collimated annihilation gamma quanta.
Precise monitoring of this profile is essential for time and energy calibration
of the J-PET detector and for the determination of the library of model signals
used in the hit-time and hit-position reconstruction. We have we have shown
that usage of two lead bricks with dimensions of 5x10x20 cm^3 enables to form a
beam of annihilation quanta with Gaussian profile characterized by 1 mm FWHM.
Determination of this characteristic is essential for designing and
construction the collimator system for the 24-module J-PET prototype.
Simulations of the beam profile for different collimator dimensions were
performed. This allowed us to choose optimal collimation system in terms of the
beam profile parameters, dimensions and weight of the collimator taking into
account the design of the 24 module J-PET detector.Comment: 14 pages, 9 figure
Isospin dependence of the eta prime meson production in nucleon-nucleon collisions
A comparison of the close-to-threshold total cross section for the eta prime
production in pp --> pp eta prime and pn --> pn eta prime reactions constitutes
a tool to investigate the eta prime meson structure and the reaction mechanism
in the channels of isospin I=0 and I=1 and may provide insight into the
flavour-singlet (perhaps also into gluonium) content of the eta prime meson. In
this contribution we present preliminary results of measurement of the
quasi-free production of the eta prime meson in the proton-neutron collisions
conducted using the COSY-11 facility.Comment: Presented at 10th International Workshop on Meson Production,
Properties and Interaction (MESON 2008), Cracow, Poland, 6 - 10 June 200
Studies of unicellular micro-organisms Saccharomyces cerevisiae by means of Positron Annihilation Lifetime Spectroscopy
Results of Positron Annihilation Lifetime Spectroscopy (PALS) and microscopic
studies on simple microorganisms: brewing yeasts are presented. Lifetime of
ortho - positronium (o-Ps) were found to change from 2.4 to 2.9 ns (longer
lived component) for lyophilised and aqueous yeasts, respectively. Also
hygroscopicity of yeasts in time was examined, allowing to check how water -
the main component of the cell - affects PALS parameters, thus lifetime of o-Ps
were found to change from 1.2 to 1.4 ns (shorter lived component) for the dried
yeasts. The time sufficient to hydrate the cells was found below 10 hours. In
the presence of liquid water an indication of reorganization of yeast in the
molecular scale was observed.
Microscopic images of the lyophilised, dried and wet yeasts with best
possible resolution were obtained using Inverted Microscopy (IM) and
Environmental Scanning Electron Microscopy (ESEM) methods. As a result visible
changes to the surface of the cell membrane were observed in ESEM images.Comment: Nukleonika (2015
J-PET: a new technology for the whole-body PET imaging
The Jagiellonian Positron Emission Tomograph (J-PET) is the first PET built
from plastic scintillators. J-PET prototype consists of 192 detection modules
arranged axially in three layers forming a cylindrical diagnostic chamber with
the inner diameter of 85 cm and the axial field-of-view of 50 cm. An axial
arrangement of long strips of plastic scintillators, their small light
attenuation, superior timing properties, and relative ease of the increase of
the axial field-of-view opens promising perspectives for the cost effective
construction of the whole-body PET scanner, as well as construction of MR and
CT compatible PET inserts. Present status of the development of the J-PET
tomograph will be presented and discussed.Comment: Presented at the 2nd Jagiellonian Symposium on Fundamental and
Applied Subatomic Physics, Krak\'ow, Poland, June 4-9, 2017. To be published
in Acta Phys. Pol.
Three-dimensional image reconstruction in J-PET using Filtered Back Projection method
We present a method and preliminary results of the image reconstruction in
the Jagiellonian PET tomograph. Using GATE (Geant4 Application for Tomographic
Emission), interactions of the 511 keV photons with a cylindrical detector were
generated. Pairs of such photons, flying back-to-back, originate from e+e-
annihilations inside a 1-mm spherical source. Spatial and temporal coordinates
of hits were smeared using experimental resolutions of the detector. We
incorporated the algorithm of the 3D Filtered Back Projection, implemented in
the STIR and TomoPy software packages, which differ in approximation methods.
Consistent results for the Point Spread Functions of ~5/7,mm and ~9/20, mm were
obtained, using STIR, for transverse and longitudinal directions, respectively,
with no time of flight information included.Comment: Presented at the 2nd Jagiellonian Symposium on Fundamental and
Applied Subatomic Physics, Krak\'ow, Poland, June 4-9, 2017. To be published
in Acta Phys. Pol.
PALS investigations of free volumes thermal expansion of J-PET plastic scintillator synthesized in polystyrene matrix
The polystyrene dopped with 2,5-diphenyloxazole as a primary fluor and
2-(4-styrylphenyl)benzoxazole as a wavelength shifter, prepared as a plastic
scintillator was investigated using positronium probe in wide range of
temperatures from 123 to 423 K. Three structural transitions at 260 K, 283 K
and 370 K were found in the material. In the o-Ps intensity dependence on
temperature, the significant hysteresis is observed. Heated to 370 K, the
material exhibits the o-Ps intensity variations in time.Comment: in Nukleonika 201
Feasibility studies of the polarization of photons beyond the optical wavelength regime with the J-PET detector
J-PET is a detector optimized for registration of photons from the
electron-positron annihilation via plastic scintillators where photons interact
predominantly via Compton scattering. Registration of both primary and
scattered photons enables to determinate the linear polarization of the primary
photon on the event by event basis with a certain probability. Here we present
quantitative results on the feasibility of such polarization measurements of
photons from the decay of positronium with the J-PET and explore the physical
limitations for the resolution of the polarization determination of 511 keV
photons via Compton scattering. For scattering angles of about 82 deg (where
the best contrast for polarization measurement is theoretically predicted) we
find that the single event resolution for the determination of the polarization
is about 40 deg (predominantly due to properties of the Compton effect).
However, for samples larger than ten thousand events the J-PET is capable of
determining relative average polarization of these photons with the precision
of about few degrees. The obtained results open new perspectives for studies of
various physics phenomena such as quantum entanglement and tests of discrete
symmetries in decays of positronium and extend the energy range of polarization
measurements by five orders of magnitude beyond the optical wavelength regime.Comment: 10 pages, 14 figures, submitted to EPJ
Commissioning of the J-PET detector for studies of decays of positronium atoms
The Jagiellonian Positron Emission Tomograph (J-PET) is a detector for
medical imaging of the whole human body as well as for physics studies
involving detection of electron-positron annihilation into photons. J-PET has
high angular and time resolution and allows for measurement of spin of the
positronium and the momenta and polarization vectors of annihilation quanta. In
this article, we present the potential of the J-PET system for background
rejection in the decays of positronium atoms.Comment: Presented at the 2nd Jagiellonian Symposium on Fundamental and
Applied Subatomic Physics, Krak\'ow, Poland, June 4-9, 2017. To be published
in Acta Phys. Pol.
- …