60 research outputs found

    NHK-1 phosphorylates BAF to allow karyosome formation in the Drosophila oocyte nucleus

    Get PDF
    Accurate chromosome segregation in meiosis requires dynamic changes in chromatin organization. In Drosophila melanogaster, upon completion of recombination, meiotic chromosomes form a single, compact cluster called the karyosome in an enlarged oocyte nucleus. This clustering is also found in humans; however, the mechanisms underlying karyosome formation are not understood. In this study, we report that phosphorylation of barrier to autointegration factor (BAF) by the conserved kinase nucleosomal histone kinase-1 (NHK-1; Drosophila Vrk1) has a critical function in karyosome formation. We find that the noncatalytic domain of NHK-1 is crucial for its kinase activity toward BAF, a protein that acts as a linker between chromatin and the nuclear envelope. A reduction of NHK-1 or expression of nonphosphorylatable BAF results in ectopic association of chromosomes with the nuclear envelope in oocytes. We propose that BAF phosphorylation by NHK-1 disrupts anchorage of chromosomes to the nuclear envelope, allowing karyosome formation in oocytes. These data provide the first mechanistic insight into how the karyosome forms

    Vasoreactivity in CADASIL: comparison to structural MRI and neuropsychology

    Get PDF
    Impaired cerebrovascular reactivity precedes histological and clinical evidence of CADASIL in animal models. We aimed to more fully characterise peripheral and cerebral vascular function and reactivity in a cohort of adult CADASIL patients, and explore the associations of these with conventional clinical, imaging and neuropsychological measures. 22 adults with CADASIL gave informed consent to participate in an exploratorystudy of vascular function in CADASIL. Clinical assessment, comprehensive vascular assessment, MRI and neuropsychological testing were conducted. Transcranial Doppler and arterial spin labelling MRI with hypercapnia challenge both measured cerebral vasoreactivity. Number and volume of lacunes, subcortical hyperintensity volume, microbleeds and normalised brain volume were assessed on MRI scans. Analysis was exploratory and examined associations between different markers. The results showed that cerebrovascular reactivity measured by ASL correlated with peripheral vasoreactivity measured by flow mediated dilatation. Subjects with >5 lacunes were older, with evidence of atherosclerosis and had impaired cerebral and peripheral vasoreactivity. Subjects with depressive symptoms, disability or delayed processing speed, also had impaired vasoreactivity, as well as more lacunes and brain atrophy. Impaired vasoreactivity and vascular dysfunction may play a significant role in the pathophysiology of CADASIL and vascular tests may be important to include in both longitudinal and clinical trials

    The conserved kinase NHK-1 is essential for mitotic progression and unifying acentrosomal meiotic spindles in Drosophila melanogaster

    Get PDF
    Conventional centrosomes are absent from the spindle in female meiosis in many species, but it is not clear how multiple chromosomes form one shared bipolar spindle without centrosomes. We identified a female sterile mutant in which each bivalent chromosome often forms a separate bipolar metaphase I spindle. Unlike wild type, prophase I chromosomes fail to form a single compact structure within the oocyte nucleus, although the integrity of metaphase I chromosomes appears to be normal. Molecular analysis indicates that the mutant is defective in the conserved kinase nucleosomal histone kinase-1 (NHK-1). Isolation of further alleles and RNA interference in S2 cells demonstrated that NHK-1 is also required for mitotic progression. NHK-1 itself is phosphorylated in mitosis and female meiosis, suggesting that this kinase is part of the regulatory system coordinating progression of mitosis and meiosis

    mini spindles: A Gene Encoding a Conserved Microtubule-Associated Protein Required for the Integrity of the Mitotic Spindle in Drosophila

    Get PDF
    We describe a new Drosophila gene, mini spindles (msps) identified in a cytological screen for mitotic mutant. Mutation in msps disrupts the structural integrity of the mitotic spindle, resulting in the formation of one or more small additional spindles in diploid cells. Nucleation of microtubules from centrosomes, metaphase alignment of chromosomes, or the focusing of spindle poles appears much less affected. The msps gene encodes a 227-kD protein with high similarity to the vertebrate microtubule-associated proteins (MAPs), human TOGp and Xenopus XMAP215, and with limited similarity to the Dis1 and STU2 proteins from fission yeast and budding yeast. Consistent with their sequence similarity, Msps protein also associates with microtubules in vitro. In the embryonic division cycles, Msps protein localizes to centrosomal regions at all mitotic stages, and spreads over the spindles during metaphase and anaphase. The absence of centrosomal staining in interphase of the cellularized embryos suggests that the interactions between Msps protein and microtubules or centrosomes may be regulated during the cell cycle

    Resting state connectivity and cognitive performance in adults with cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy

    Get PDF
    Cognitive impairment is an inevitable feature of cerebral autosomal-dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), affecting executive function, attention and processing speed from an early stage. Impairment is associated with structural markers such as lacunes, but associations with functional connectivity have not yet been reported. Twenty-two adults with genetically-confirmed CADASIL (11 male; aged 49.8 ± 11.2 years) underwent functional magnetic resonance imaging at rest. Intrinsic attentional/executive networks were identified using group independent components analysis. A linear regression model tested voxel-wise associations between cognitive measures and component spatial maps, and Pearson correlations were performed with mean intra-component connectivity z-scores. Two frontoparietal components were associated with cognitive performance. Voxel-wise analyses showed an association between one component cluster and processing speed (left middle temporal gyrus; peak −48, −18, −14; ZE = 5.65, pFWEcorr = 0.001). Mean connectivity in both components correlated with processing speed (r = 0.45, p = 0.043; r = 0.56, p = 0.008). Mean connectivity in one component correlated with faster Trailmaking B minus A time (r = −0.77, p < 0.001) and better executive performance (r = 0.56, p = 0.011). This preliminary study provides evidence for associations between cognitive performance and attentional network connectivity in CADASIL. Functional connectivity may be a useful biomarker of cognitive performance in this population

    Polo boxes and Cut23 (Apc8) mediate an interaction between polo kinase and the anaphase-promoting complex for fission yeast mitosis

    Get PDF
    The fission yeast plo1+ gene encodes a polo-like kinase, a member of a conserved family of kinases which play multiple roles during the cell cycle. We show that Plo1 kinase physically interacts with the anaphase-promoting complex (APC)/cyclosome through the noncatalytic domain of Plo1 and the tetratricopeptide repeat domain of the subunit, Cut23. A new cut23 mutation, which specifically disrupts the interaction with Plo1, results in a metaphase arrest. This arrest can be rescued by high expression of Plo1 kinase. We suggest that this physical interaction is crucial for mitotic progression by targeting polo kinase activity toward the APC

    A PAR-1–dependent orientation gradient of dynamic microtubules directs posterior cargo transport in the Drosophila oocyte

    Get PDF
    A PAR-1–mediated bias in microtubule organization in the Drosophila oocyte underlies posterior-directed mRNA transport

    Brain imaging factors associated with progression of subcortical hyperintensities in CADASIL over two year follow up

    Get PDF
    Background: Mutations in the NOTCH3 gene cause CADASIL, a cerebral small vessel disease manifesting with stroke, migraine and dementia in adults. The disease displays significant phenotypic variability which is incompletely explained. Early abnormalities in vascular function have been shown in animal models. We postulated that studying changes in vascular function may offer insights into disease progression. Methods: Twenty two subjects with CADASIL (50% female, 50 (±11) years) from 19 pedigrees were included in a longitudinal multimodality study using brain MRI, clinical measures, neuropsychology, and measures of peripheral vascular function. MRI studies included measurement of structural brain changes, cerebral blood flow (CBF) and cerebrovascular reactivity by arterial spin labelling and a CO2 respiratory challenge. Results: Over two years, new stroke or TIA occurred in 5 (23%) subjects and new significant disability in 1 (5%). There were significant increases in number of lacunes, subcortical hyperintensity volume and microbleeds, and a decrease in brain volume. CBF declined by 3.2 (±4.5) ml/100g/min over two years. CBF and carotid‐femoral pulse wave velocity at baseline predicted change in subcortical hyperintensity volume at follow up. Carotid‐intima‐media thickness and age predicted brain atrophy. Baseline CBF was lower in subjects who showed a decline in attention and working memory. Conclusion: CBF predicts radiological progression of hyperintensities and thus is a potential biomarker of disease progression in CADASIL. Over two years, there were changes in several relevant imaging biomarkers (CBF, brain volume, lacunes, microbleeds, and hyperintensity volume). Future studies in CADASIL should consider assessment of CBF as prognostic factor

    What do general practitioners know about ADHD? Attitudes and knowledge among first-contact gatekeepers: systematic narrative review

    Get PDF
    Background: Attention Deficit Hyperactivity Disorder (ADHD) is a common childhood disorder with international prevalence estimates of 5 % in childhood, yet significant evidence exists that far fewer children receive ADHD services. In many countries, ADHD is assessed and diagnosed in specialist mental health or neuro-developmental paediatric clinics, to which referral by General (Family) Practitioners (GPs) is required. In such ‘gatekeeper’ settings, where GPs act as a filter to diagnosis and treatment, GPs may either not recognise potential ADHD cases, or may be reluctant to refer. This study systematically reviews the literature regarding GPs’ views of ADHD in such settings. Methods: A search of nine major databases was conducted, with wide search parameters; 3776 records were initially retrieved. Studies were included if they were from settings where GPs are typically gatekeepers to ADHD services; if they addressed GPs’ ADHD attitudes and knowledge; if methods were clearly described; and if results for GPs were reported separately from those of other health professionals. Results: Few studies specifically addressed GP attitudes to ADHD. Only 11 papers (10 studies), spanning 2000–2010, met inclusion criteria, predominantly from the UK, Europe and Australia. As studies varied methodologically, findings are reported as a thematic narrative, under the following themes: Recognition rate; ADHD controversy (medicalisation, stigma, labelling); Causes of ADHD; GPs and ADHD diagnosis; GPs and ADHD treatment; GP ADHD training and sources of information; and Age, sex differences in knowledge and attitudes. Conclusions: Across times and settings, GPs practising in first-contact gatekeeper settings had mixed and often unhelpful attitudes regarding the validity of ADHD as a construct, the role of medication and how parenting contributed to presentation. A paucity of training was identified, alongside a reluctance of GPs to become involved in shared care practice. If access to services is to be improved for possible ADHD cases, there needs to be a focused and collaborative approach to training

    The microtubule catastrophe promoter Sentin delays stable kinetochore-microtubule attachment in oocytes

    Get PDF
    The critical step in meiosis is to attach homologous chromosomes to the opposite poles. In mouse oocytes, stable microtubule end-on attachments to kinetochores are not established until hours after spindle assembly, and phosphorylation of kinetochore proteins by Aurora B/C is responsible for the delay. Here we demonstrated that microtubule ends are actively prevented from stable attachment to kinetochores until well after spindle formation in Drosophila melanogaster oocytes. We identified the microtubule catastrophe-promoting complex Sentin-EB1 as a major factor responsible for this delay. Without this activity, microtubule ends precociously form robust attachments to kinetochores in oocytes, leading to a high proportion of homologous kinetochores stably attached to the same pole. Therefore, regulation of microtubule ends provides an alternative novel mechanism to delay stable kinetochore–microtubule attachment in oocytes
    corecore