234 research outputs found

    Mauna Kea Sky Transparency from CFHT SkyProbe Data

    Full text link
    Nighttime sky transparency statistics on Mauna Kea are reported based on data from the Canada-France-Hawaii Telescope SkyProbe monitor. We focus on the period beginning with the start of MegaCam wide-field optical imager operations in 2003, and continuing for almost three years. Skies were clear enough to observe on 76% of those nights; attenuations were less than 0.2 magnitudes up to 60% of the time. An empirical model of cloud attenuation and duration is presented allowing us to further characterize the photometric conditions. This is a good fit tothe SkyProbe data, and indicates that Mauna Kea skies are truly photometric (without cloud) an average of 56% of the time, with moderate seasonal variation. Continuous monitoring of transparency during the night is necessary to overcome fluctuations in attenuation due to thin cloud.Comment: 10 pages, 6 figures, submitted to PAS

    Deep imaging of the shell elliptical galaxy NGC3923 with MegaCam

    Full text link
    Context. The elliptical galaxy NGC 3923 is known to be surrounded by a number of stellar shells, probable remnants of an accreted galaxy. Despite its uniqueness, the deepest images of its outskirts come from the 1980s. On the basis of the modified Newtonian dynamics (MOND), it has recently been predicted that a new shell lies in this region. Aims. We obtain the deepest image ever of the galaxy, map the tidal features in it, and search for the predicted shell. Methods. The image of the galaxy was taken by the MegaCam camera at the Canada-France-Hawaii Telescope in the g' band. It reached the surface-brightness limit of 29 mag/arcsec2. In addition, we reanalyzed an archival HST image of the galaxy. Results. We detected up to 42 shells in NGC 3923. This is by far the highest number among all shell galaxies. We present the description of the shells and other tidal features in the galaxy. A probable progenitor of some of these features was discovered. The shell system likely originates from two or more progenitors. The predicted shell was not detected, but the new image revealed that the prediction was based on incorrect assumptions and poor data.Comment: 14 pages, 2 tables, 19 figures, accepted for publication in A&

    A weak lensing study of the Coma cluster

    Full text link
    Due to observational constraints, dark matter determinations in nearby clusters based on weak lensing are still extremely rare, in spite of their importance for the determination of cluster properties independent of other methods. We present a weak lensing study of the Coma cluster (redshift 0.024) based on deep images obtained at the CFHT. After obtaining photometric redshifts for the galaxies in our field based on deep images in the u (1x1 deg2), and in the B, V, R and I bands (42'x52'), allowing us to eliminate foreground galaxies, we apply weak lensing calculations on shape measurements performed in the u image. We derive a map of the mass distribution in Coma, as well as the radial shear profile, and the mass and concentration parameter at various radii. We obtain M_200c = 5.1+4.3-2.1 x10^14 Msun and c_200c=5.0+3.2-2.5, in good agreement with previous measurements. With deep wide field images it is now possible to analyze nearby clusters with weak lensing techniques, thus opening a broad new field of investigation

    A definitive merger-AGN connection at z~0 with CFIS: mergers have an excess of AGN and AGN hosts are more frequently disturbed

    Full text link
    The question of whether galaxy mergers are linked to the triggering of active galactic nuclei (AGN) continues to be a topic of considerable debate. The issue can be broken down into two distinct questions: 1) Can galaxy mergers trigger AGN? 2) Are galaxy mergers the dominant AGN triggering mechanism? A complete picture of the AGN-merger connection requires that both of these questions are addressed with the same dataset. In previous work, we have shown that galaxy mergers selected from the Sloan Digital Sky Survey (SDSS) show an excess of both optically-selected, and mid-IR colour-selected AGN, demonstrating that the answer to the first of the above questions is affirmative. Here, we use the same optical and mid-IR AGN selection to address the second question, by quantifying the frequency of morphological disturbances in low surface brightness r-band images from the Canada France Imaging Survey (CFIS). Only ~30 per cent of optical AGN host galaxies are morphologically disturbed, indicating that recent interactions are not the dominant trigger. However, almost 60 per cent of mid-IR AGN hosts show signs of visual disturbance, indicating that interactions play a more significant role in nuclear feeding. Both mid-IR and optically selected AGN have interacting fractions that are a factor of two greater than a mass and redshift matched non-AGN control sample, an excess that increases with both AGN luminosity and host galaxy stellar mass.Comment: Accepted for publication in MNRA

    Faint dwarf galaxies in the Next Generation Virgo cluster Survey

    Full text link
    The Next Generation Virgo Cluster Survey (NGVS) is a CFHT Large Program that is using the wide field of view capabilities of the MegaCam camera to map the entire Virgo Cluster from its core to virial radius. The observing strategy has been optimized to detect very low surface brightness structures in the cluster, including intracluster stellar streams and faint dwarf spheroidal galaxies. We present here the current status of this ongoing survey, with an emphasis on the detection and analysis of the very low-mass galaxies in the cluster that have been revealed by the NGVS.Comment: 6 pages, 2 figures, Conference Proceedings: "A Universe of Dwarf Galaxies", 14-18 June 2010, Lyon, Franc

    A Turbulent Origin for Flocculent Spiral Structure in Galaxies: II. Observations and Models of M33

    Full text link
    Fourier transform power spectra of azimuthal scans of the optical structure of M33 are evaluated for B, V, and R passbands and fit to fractal models of continuum emission with superposed star formation. Power spectra are also determined for Halpha. The best models have intrinsic power spectra with 1D slopes of around -0.7pm0.7, significantly shallower than the Kolmogorov spectrum (slope =-1.7) but steeper than pure noise (slope=0). A fit to the power spectrum of the flocculent galaxy NGC 5055 gives a steeper slope of around -1.5pm0.2, which could be from turbulence. Both cases model the optical light as a superposition of continuous and point-like stellar sources that follow an underlying fractal pattern. Foreground bright stars are clipped in the images, but they are so prominent in M33 that even their residual affects the power spectrum, making it shallower than what is intrinsic to the galaxy. A model consisting of random foreground stars added to the best model of NGC 5055 fits the observed power spectrum of M33 as well as the shallower intrinsic power spectrum that was made without foreground stars. Thus the optical structure in M33 could result from turbulence too.Comment: accepted by ApJ, 13 pages, 10 figure

    The lower mass function of the young open cluster Blanco 1: from 30 Mjup to 3 Mo

    No full text
    18 pages, 15 figures and 5 tables accepted in A&AWe performed a deep wide field optical survey of the young (~100-150 Myr) open cluster Blanco1 to study its low mass population well down into the brown dwarf regime and estimate its mass function over the whole cluster mass range.The survey covers 2.3 square degrees in the I and z-bands down to I~z~24 with the CFH12K camera. Considering two different cluster ages (100 and 150 Myr), we selected cluster member candidates on the basis of their location in the (I,I-z) CMD relative to the isochrones, and estimated the contamination by foreground late-type field dwarfs using statistical arguments, infrared photometry and low-resolution optical spectroscopy. We find that our survey should contain about 57% of the cluster members in the 0.03-0.6 Mo mass range, including 30-40 brown dwarfs. The candidate's radial distribution presents evidence that mass segregation has already occured in the cluster. We took it into account to estimate the cluster mass function across the stellar/substellar boundary. We find that, between 0.03Mo and 0.6Mo, the cluster mass distribution does not depend much on its exact age, and is well represented by a single power-law, with an index alpha=0.69 +/- 0.15. Over the whole mass domain, from 0.03Mo to 3Mo, the mass function is better fitted by a log-normal function with m0=0.36 +/- 0.07Mo and sigma=0.58 +/- 0.06. Comparison between the Blanco1 mass function, other young open clusters' MF, and the galactic disc MF suggests that the IMF, from the substellar domain to the higher mass part, does not depend much on initial conditions. We discuss the implications of this result on theories developed to date to explain the origin of the mass distribution
    corecore