91 research outputs found

    Study on Pricing Model of Air Freight Based on Revenue Management

    Get PDF
    At present, the air freight rate does not match with the current competitive environment, and the revenue level of air freight is not ideal. How to improve the level of income management and balance the relationship between quantity and price has become an urgent problem for China’s air freight. In this context, this paper constructs an air freight pricing model based on revenue management. We review the application models of the air freight, and select the parameters for pricing model. Then the pricing model is constructed based on the revenue management and the status quo of China’s air freight industry. Finally, the model is tested by simulation analysis. This paper aims to provide a scientific and reasonable decision-making reference for air freight pricing through the improvement of pricing model

    Pilus of Streptococcus pneumoniae: structure, function and vaccine potential

    Get PDF
    The pilus is an extracellular structural part that can be detected in some Streptococcus pneumoniae (S. pneumoniae) isolates (type I pili are found in approximately 30% of strains, while type II pili are found in approximately 20%). It is anchored to the cell wall by LPXTG-like motifs on the peptidoglycan. Two kinds of pili have been discovered, namely, pilus-1 and pilus-2. The former is encoded by pilus islet 1 (PI-1) and is a polymer formed by the protein subunits RrgA, RrgB and RrgC. The latter is encoded by pilus islet 2 (PI-2) and is a polymer composed mainly of the structural protein PitB. Although pili are not necessary for the survival of S. pneumoniae, they serve as the structural basis and as virulence factors that mediate the adhesion of bacteria to host cells and play a direct role in promoting the adhesion, colonization and pathogenesis of S. pneumoniae. In addition, as candidate antigens for protein vaccines, pili have promising potential for use in vaccines with combined immunization strategies. Given the current understanding of the pili of S. pneumoniae regarding the genes, proteins, structure, biological function and epidemiological relationship with serotypes, combined with the immunoprotective efficacy of pilins as protein candidates for vaccines, we here systematically describe the research status and prospects of S. pneumoniae pili and provide new ideas for subsequent vaccine research and development

    Under the different sectors: the relationship between low-carbon economic development, health and GDP

    Get PDF
    Developing a modern low-carbon economy while protecting health is not only a current trend but also an urgent problem that needs to be solved. The growth of the national low-carbon economy is closely related to various sectors; however, it remains unclear how the development of low-carbon economies in these sectors impacts the national economy and the health of residents. Using panel data on carbon emissions and resident health in 28 province-level regions in China, this study employs unit root tests, co-integration tests, and regression analysis to empirically examine the relationship between carbon emissions, low-carbon economic development, health, and GDP in industry, construction, and transportation. The results show that: First, China’s carbon emissions can promote economic development. Second, low-carbon economic development can enhance resident health while improving GDP. Third, low-carbon economic development has a significant positive effect on GDP and resident health in the industrial and transportation sector, but not in the construction sector, and the level of industrial development and carbon emission sources are significant factors contributing to the inconsistency. Our findings complement existing insights into the coupling effect of carbon emissions and economic development across sectors. They can assist policymakers in tailoring low-carbon policies to specific sectors, formulating strategies to optimize energy consumption structures, improving green technology levels, and aiding enterprises in gradually reducing carbon emissions without sacrificing economic benefits, thus achieving low-carbon economic development

    Graphene oxide membranes using MOF@Chitosan core-shell nanoparticles as dual modulators for dye separation

    Get PDF
    Graphene oxide (GO) membranes hold significant promise for the water purification. However, they also face the problem of structural swelling, which limits their use in water treatment applications. In this work, a novel dual-modulated core-shell metal-organic framework@Chitosan (MOF@CS) was successfully synthesized and used as an intercalation cross-linker to optimize the interlayer spacing and stability of GO membranes. Molecular dynamics simulation confirms that MOF@CS, acting as an intercalator, accelerates the water diffusion rate within the channels of the GO layer compared to a pure GO layer. At the same time, Fourier Transform Infrared Spectroscopy analysis reveals that MOF@CS serves as a cross-linker for covalently cross-linking the GO layer. The nanofiltration performance and stability of the improved MOF@CS-GO composite membranes were significantly enhanced. Compared to the pure GO membranes, the MOF@CS-GO composite membranes exhibited enhanced Congo red rejection rates (from 76.5% to 95.6%) while maintaining a high pure water flux (34.5 L·m-2·h-1·bar-1) and good structural stability (stable dye removal performance over 120 h). This dual regulation strategy is expected to effectively solve the swelling problem of GO membranes in aqueous media and open up avenues for advancing their performance

    In search of novel immune-modulatory compounds from British Columbia wild mushrooms and their effectiveness in inflammatory micro-circulation of mice

    Get PDF
    Natural products have been an integral component of people's health and health outcomes for thousands of years. In particular, several mushroom species have demonstrated beneficial therapeutic potential. The goals of this research are to explore the immune-stimulatory and anti-inflammatory potential of wild mushrooms native to the North Central region of British Columbia. Out of 42 mushroom extracts examined, four exhibited strong immune-stimulatory activity as assessed by induction of tumor-necrosis factor alpha (TNF-a) production in macrophage cells. Out of thirty-three extracts tests, nineteen demonstrated potent anti-inflammatory activity as determined by inhibition of lipopolysaccharide-induced TNF-a production in macrophage cells. Sodium hydroxide extract of Echinodontium trinctorium exhibited potent anti-inflammatory activity and was selected for further study. A small molecular weight (~5-25 kDa) carbohydrate was successfully purified using sequential size-exclusion and ion-exchange chromatography. GC-MS analysis showed that the polysaccharide has glucose (89.7%) as the major back-bone monosaccharide, and also the presence of other monosaccharides such as mannose (3.1%), galactose (2.8%), fucose (2.4%), and xylose (2.0%). The study also revealed the presence of 1,3-linked glucose linkages. Both the semi-purified anti-inflammatory compound(s) from E. tinctorium and the methanol extract of Inonotus obliquus can ameliorate histamine-induced vasodilation in the 2A arterioles (gluteus maximus muscle) in mice. This is the first study to demonstrate the anti-inflammatory activity of purified compounds and extracts from mushroom in an animal microcirculation model using intravital microscopy

    Genomic Analyses Reveal Mutational Signatures and Frequently Altered Genes in Esophageal Squamous Cell Carcinoma

    Get PDF
    Esophageal squamous cell carcinoma (ESCC) is one of the most common cancers worldwide and the fourth most lethal cancer in China. However, although genomic studies have identified some mutations associated with ESCC, we know little of the mutational processes responsible. To identify genome-wide mutational signatures, we performed either whole-genome sequencing (WGS) or whole-exome sequencing (WES) on 104 ESCC individuals and combined our data with those of 88 previously reported samples. An APOBEC-mediated mutational signature in 47% of 192 tumors suggests that APOBEC-catalyzed deamination provides a source of DNA damage in ESCC. Moreover, PIK3CA hotspot mutations (c.1624G>A [p.Glu542Lys] and c.1633G>A [p.Glu545Lys]) were enriched in APOBEC-signature tumors, and no smoking-associated signature was observed in ESCC. In the samples analyzed by WGS, we identified focal (<100 kb) amplifications of CBX4 and CBX8. In our combined cohort, we identified frequent inactivating mutations in AJUBA, ZNF750, and PTCH1 and the chromatin-remodeling genes CREBBP and BAP1, in addition to known mutations. Functional analyses suggest roles for several genes (CBX4, CBX8, AJUBA, and ZNF750) in ESCC. Notably, high activity of hedgehog signaling and the PI3K pathway in approximately 60% of 104 ESCC tumors indicates that therapies targeting these pathways might be particularly promising strategies for ESCC. Collectively, our data provide comprehensive insights into the mutational signatures of ESCC and identify markers for early diagnosis and potential therapeutic targets

    A Computational Investigation on the Connection between Dynamics Properties of Ribosomal Proteins and Ribosome Assembly

    Get PDF
    Assembly of the ribosome from its protein and RNA constituents has been studied extensively over the past 50 years, and experimental evidence suggests that prokaryotic ribosomal proteins undergo conformational changes during assembly. However, to date, no studies have attempted to elucidate these conformational changes. The present work utilizes computational methods to analyze protein dynamics and to investigate the linkage between dynamics and binding of these proteins during the assembly of the ribosome. Ribosomal proteins are known to be positively charged and we find the percentage of positive residues in r-proteins to be about twice that of the average protein: Lys+Arg is 18.7% for E. coli and 21.2% for T. thermophilus. Also, positive residues constitute a large proportion of RNA contacting residues: 39% for E. coli and 46% for T. thermophilus. This affirms the known importance of charge-charge interactions in the assembly of the ribosome. We studied the dynamics of three primary proteins from E. coli and T. thermophilus 30S subunits that bind early in the assembly (S15, S17, and S20) with atomic molecular dynamic simulations, followed by a study of all r-proteins using elastic network models. Molecular dynamics simulations show that solvent-exposed proteins (S15 and S17) tend to adopt more stable solution conformations than an RNA-embedded protein (S20). We also find protein residues that contact the 16S rRNA are generally more mobile in comparison with the other residues. This is because there is a larger proportion of contacting residues located in flexible loop regions. By the use of elastic network models, which are computationally more efficient, we show that this trend holds for most of the 30S r-proteins

    Multiple Loci Are Associated with White Blood Cell Phenotypes

    Get PDF
    White blood cell (WBC) count is a common clinical measure from complete blood count assays, and it varies widely among healthy individuals. Total WBC count and its constituent subtypes have been shown to be moderately heritable, with the heritability estimates varying across cell types. We studied 19,509 subjects from seven cohorts in a discovery analysis, and 11,823 subjects from ten cohorts for replication analyses, to determine genetic factors influencing variability within the normal hematological range for total WBC count and five WBC subtype measures. Cohort specific data was supplied by the CHARGE, HeamGen, and INGI consortia, as well as independent collaborative studies. We identified and replicated ten associations with total WBC count and five WBC subtypes at seven different genomic loci (total WBC count—6p21 in the HLA region, 17q21 near ORMDL3, and CSF3; neutrophil count—17q21; basophil count- 3p21 near RPN1 and C3orf27; lymphocyte count—6p21, 19p13 at EPS15L1; monocyte count—2q31 at ITGA4, 3q21, 8q24 an intergenic region, 9q31 near EDG2), including three previously reported associations and seven novel associations. To investigate functional relationships among variants contributing to variability in the six WBC traits, we utilized gene expression- and pathways-based analyses. We implemented gene-clustering algorithms to evaluate functional connectivity among implicated loci and showed functional relationships across cell types. Gene expression data from whole blood was utilized to show that significant biological consequences can be extracted from our genome-wide analyses, with effect estimates for significant loci from the meta-analyses being highly corellated with the proximal gene expression. In addition, collaborative efforts between the groups contributing to this study and related studies conducted by the COGENT and RIKEN groups allowed for the examination of effect homogeneity for genome-wide significant associations across populations of diverse ancestral backgrounds

    Genetic Drivers of Heterogeneity in Type 2 Diabetes Pathophysiology

    Get PDF
    Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P \u3c 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care
    corecore