252 research outputs found

    Objective circulation classification of rainstorm days associated with Northeast China cold vortexes in the warm seasons of 2000–19

    Get PDF
    This study conducts objective circulation classifications of rainstorm days associated with Northeast China Cold Vortexes (NECVs) in the northeast of China (NEC) during the warm seasons (May–September). To determine the optimal method and number of types, the performances of ten objective circulation classification methods are first evaluated by several evaluation indexes. Self-Organizing Maps method is then used as the optimal method to classify rainstorms into five types. The results show that the different synoptic circulation patterns are accompanied by distinctive large-scale circulation backgrounds, precipitation characteristics, thermodynamic and moisture conditions. In type 1, the strong western Pacific subtropical high extends north to connect with the mid-latitude ridge in the east of the NEC, and a shallow trough lies in the west of the NEC. This configuration brings the most daily and hourly mean precipitation of all types. A low-pressure anomaly with an obvious trough controls the NEC in type 2, which has a higher frequency. In type 3, the low-pressure anomaly shrinks to the south of the NEC, and the NEC is controlled by the cut-off low vortex. Type 4 has the strongest hourly precipitation and features a meridional high-low-high pressure anomaly, and the narrow zonal low-pressure anomaly is in the NEC. Two low-pressure anomalies and a westerly trough can be found in type 5 and are distributed in a southwest-northeast orientation. These synoptic circulation patterns and the corresponding spatial distribution of rainstorm-day precipitation indicate that the objective circulation classification is effective in helping understand the large-scale circulation and precipitation characteristics associated with NECVs

    High-order localized spoof surface plasmon resonances and experimental verifications

    Full text link
    We theoretically demonstrated and experimentally verified high-order radial spoof localized surface plasmon resonances supported by textured metal particles. Through an effective medium theory and exact numerical simulations, we show the emergence of these geometrically-originated electromagnetic modes at microwave frequencies. The occurrence of high-order radial spoof plasmon resonances is experimentally verified in ultrathin disks. Their spectral and near-field properties are characterized experimentally, showing an excellent agreement with theoretical predictions. Our findings shed light into the nature of spoof localized surface plasmons, and open the way to the design of broadband plasmonic devices able to operate at very different frequency regimes.Comment: 29 pages, 10 figure

    Is Fermi 1544-0649 a misaligned blazar? discovering the jet structure with VLBI

    Full text link
    Fermi J1544-0649 is a transient GeV source first detected during its GeV flares in 2017. Multi-wavelength observations during the flaring time demonstrate variability and spectral energy distribution(SED) that are typical of a blazar. Other than the flare time, Fermi J1544-0649 is quiet in the GeV band and looks rather like a quiet galaxy (2MASX J15441967-0649156) for a decade. Together with the broad absorption lines feature we further explore the "misaligned blazar scenario". We analyzed the Very Long Baseline Array (VLBA) and East Asian VLBI Network (EAVN) data from 2018 to 2020 and discovered the four jet components from Fermi J1544-0649. We found a viewing angle around 3.7{\deg} to 7.4{\deg}. The lower limit of the viewing angle indicates a blazar with an extremely low duty cycle of the gamma-ray emission, the upper limit of it supports the "misaligned blazar scenario". Follow-up multi-wavelength observations after 2018 show Fermi J1544-0649 remains quiet in GeV, X-ray, and optical bands. Multi-messenger search of neutrinos is also performed, and an excess of 3.1 {\sigma} significance is found for this source.Comment: Accepted for publication in ApJ. 13 pages, 7 figure

    Profiling Caenorhabditis elegans non-coding RNA expression with a combined microarray

    Get PDF
    Small non-coding RNAs (ncRNAs) are encoded by genes that function at the RNA level, and several hundred ncRNAs have been identified in various organisms. Here we describe an analysis of the small non-coding transcriptome of Caenorhabditis elegans, microRNAs excepted. As a substantial fraction of the ncRNAs is located in introns of protein-coding genes in C.elegans, we also analysed the relationship between ncRNA and host gene expression. To this end, we designed a combined microarray, which included probes against ncRNA as well as host gene mRNA transcripts. The microarray revealed pronounced differences in expression profiles, even among ncRNAs with housekeeping functions (e.g. snRNAs and snoRNAs), indicating distinct developmental regulation and stage-specific functions of a number of novel transcripts. Analysis of ncRNA–host mRNA relations showed that the expression of intronic ncRNA loci with conserved upstream motifs was not correlated to (and much higher than) expression levels of their host genes. Even promoter-less intronic ncRNA loci, though showing a clear correlation to host gene expression, appeared to have a surprising amount of ‘expressional freedom’, depending on host gene function. Taken together, our microarray analysis presents a more complete and detailed picture of a non-coding transcriptome than hitherto has been presented for any other multicellular organism

    Source-Frequency Phase-Referencing Observation of AGNs with KaVA Using Simultaneous Dual-Frequency Receiving

    Full text link
    The KVN(Korean VLBI Network)-style simultaneous multi-frequency receiving mode is demonstrated to be promising for mm-VLBI observations. Recently, other Very long baseline interferometry (VLBI) facilities all over the globe start to implement compatible optics systems. Simultaneous dual/multi-frequency VLBI observations at mm wavelengths with international baselines are thus possible. In this paper, we present the results from the first successful simultaneous 22/43 GHz dual-frequency observation with KaVA(KVN and VERA array), including images and astrometric results. Our analysis shows that the newly implemented simultaneous receiving system has brought a significant extension of the coherence time of the 43 GHz visibility phases along the international baselines. The astrometric results obtained with KaVA are consistent with those obtained with the independent analysis of the KVN data. Our results thus confirm the good performance of the simultaneous receiving systems for the non-KVN stations. Future simultaneous observations with more global stations bring even higher sensitivity and micro-arcsecond level astrometric measurements of the targets.Comment: 8 pages, 6 figures, Published in JKA

    AutoFP: a GUI for highly automated Rietveld refinement using an expert system algorithm based on FullProf

    Get PDF
    AutoFP, a highly automated software toolkit, has been developed to improve the extent of automation of the widely used Rietveld refinement program FullProf [Rodríguez-Carvajal (1993). Physica B, 192, 55-69]. An expert system algorithm is used as the control layer to simulate the manual process when FullProf is used to perform Rietveld refinement. This enables the program to complete the Rietveld refinement highly automatically. It is shown that the expert system algorithm is a good choice for automating Rietveld refinement. The programming interface is available for advanced users to implement their own acquired experience of refinement or add new Rietveld refinement engines to AutoFP. AutoFP can be also used as an automated Rietveld refinement engine by other programs. AutoFP is an open-source software package developed in Python, and it is user friendly, easy to learn and easy to use
    • …
    corecore