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AutoFP, a highly automated software toolkit, has been developed to improve

the extent of automation of the widely used Rietveld refinement program

FullProf [Rodrı́guez-Carvajal (1993). Physica B, 192, 55–69]. An expert system

algorithm is used as the control layer to simulate the manual process when

FullProf is used to perform Rietveld refinement. This enables the program to

complete the Rietveld refinement highly automatically. It is shown that the

expert system algorithm is a good choice for automating Rietveld refinement.

The programming interface is available for advanced users to implement their

own acquired experience of refinement or add new Rietveld refinement engines

to AutoFP. AutoFP can be also used as an automated Rietveld refinement

engine by other programs. AutoFP is an open-source software package

developed in Python, and it is user friendly, easy to learn and easy to use.

1. Introduction

Atomic arrangement or crystalline structure is extremely

important in determining the properties of solids. Single-

crystal growth is not easy and is sometimes impossible for

certain compounds. As a result, the powder diffraction method

is a powerful tool for crystal structure determination. In

powder diffraction crystallography it is difficult to obtain

complete information on a crystal structure without using

Rietveld refinement, because there are strongly overlapping

reflections (Le Bail et al., 1988). Rietveld refinement is a

method of analysing powder diffraction data in which the

crystal structure is refined by fitting the entire profile of the

diffraction pattern to a calculated profile using a least-squares

approach (Rietveld, 1969). Rietveld refinement does not

involve the intermediate step of extracting structure factors, so

patterns containing many overlapping Bragg peaks can be

analysed (Young, 1993). In addition, Rietveld refinement uses

all the powder diffraction data instead of only the peaks, so it

can obtain more information from the powder diffraction data

(Rietveld, 1967). Many computer programs have been devel-

oped for crystal structure determination and Rietveld refine-

ment (Larson & Von Dreele, 2004; Rodrı́guez-Carvajal, 1993;

Toby, 2001; Akselrud & Grin, 2014; Petřı́ček et al., 2014;

Murray et al., 1990; Howard & Hunter, 1998; Izumi, 1989;

Bergmann et al., 1998; Coelho, 2004). However, most of these

Rietveld programs require intensive user intervention, and

there is also a sharp learning curve for new users (Tian et al.,

2013). SrRietveld (Tian et al., 2013; Tian & Billinge, 2011),
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which was developed as a part of the DANSE project, is a

fairly good start for a highly automated software toolkit for

Rietveld refinement.

AutoFP uses an expert system algorithm to improve the

extent of automation of the widely used Rietveld refinement

program FullProf (Rodrı́guez-Carvajal, 1993). An expert

system is a computer system that simulates the decision-

making ability of a human expert (Jackson, 1998; Liao, 2005).

The first expert systems were developed in the 1970s and they

boomed in the 1980s (Leondes, 2002; Russell & Norvig, 2009).

The manual process of using FullProf can be considered as a

decision-making process, and an expert system algorithm can

be used to simulate that process.

The current Rietveld refinement programs pose three major

difficulties for beginners. First, it is difficult to decide the

refinement order of parameters (McCusker et al., 1999).

Second, divergence often occurs, which destroys the whole

outcome of the refinement. Third, the repeated operation of

checking and unchecking parameters is inefficient and slow.

The expert system algorithm is used to help decide the

refinement order of parameters automatically, which solves

the first and third difficulties. In order to solve the second

difficulty, AutoFP saves every best result for reuse when

divergence occurs. The use of FullProf as the Rietveld

refinement engine guarantees the correctness of the Rietveld

refinement process. AutoFP provides an automation layer

controlled by the expert system algorithm and a graphical user

interface (GUI). The layer is implemented in Python packages

that can manipulate and communicate with the refinement

engines. In order to save development time, AutoFP’s inter-

face with FullProf is based on the SrRietveld program (Tian et

al., 2013). The expert system algorithm takes Rwp as the target

function to be minimized and takes full advantage of the

existing knowledge of refinement to adjust the order and

values of the parameters. Therefore, the manual refinement

process can be simulated automatically, and the results can be

displayed and analysed by AutoFP.

It should be pointed out that the expert system algorithm is

a classic simulation decision system, and in this paper it is

shown to be successful at automating FullProf. Other appro-

priate machine-learning artificial intelligence algorithms, such

as the Q-learning algorithm (Watkins & Dayan, 1992), might

also be good strategies to improve the extent of automation of

Rietveld refinement programs.

Although AutoFP has automated the FullProf Rietveld

refinement, it is important to note that even a stable refine-

ment with a low R factor does not guarantee a correct result,

and that there is no replacement for human expertise in

evaluating the correctness of a structure based on Rietveld

refinement. In particular, an incorrect initial choice of space

group, incorrectly assigned atoms etc. can never be corrected

by this system, and their effects can prove extremely subtle.

Furthermore, AutoFP is designed to automate the refinement

from the correct .pcr format file (the input parameters for

FullProf). Users should be sure of the validity of the .pcr file

before using AutoFP, or no meaningful result can be obtained

from AutoFP.

2. AutoFP
2.1. Design principles

AutoFP has been developed in the Python language

(Sanner, 1999; http://www.python.org) using object-oriented

programming (OOP) concepts. The OOP design enables

AutoFP to be easily maintained and extended. Python is used

extensively in scientific software development. It is a cross-

platform language and suitable for fast development. NumPy

(http://www.numpy.org) and Matplotlib (http://matplotlib.org)

are well designed packages for scientific programming and

visualization. In AutoFP, the Matplotlib package is used to

plot the Rwp curve, while the NumPy package is used to handle

the arrays. The user interface (UI) of AutoFP was developed

using the PyQt package (http://sourceforge.net/projects/pyqt).

Qt is a cross-platform application and UI framework, and

PyQt is the Python bindings for Qt. The features of Python

and PyQt can help AutoFP to run on more operating system

platforms.

AutoFP is based on the following design principles:

(1) Simulate the decision-making ability of a human expert

to complete the Rietveld refinement.

(2) Make the refinement process highly automated.

(3) Be open source and extensible.

To address principle (1), the control layer of AutoFP uses

an expert system. Expert systems are designed to solve

complex problems by reasoning based on knowledge, repre-

sented primarily as if–then rules. The knowledge base repre-

sents facts and rules. The inference engine applies the rules to

the known facts to deduce new facts. Inference engines can

also include explanation and debugging capabilities (Ryan,

2014).

In the AutoFP program, the refinement engine is FullProf,

the inference engine is a control layer based on the expert

system algorithm, and the knowledge base is the existing

acquired experience of refinement and strategies. We collect

the refinement experiences and strategies, then simplify them

as if–then rules, which form the refinement knowledge base.

When AutoFP starts a refinement, the control layer auto-

matically arranges the refined parameters in order, auto-

matically checks and unchecks the refined parameters,

monitors the status of the FullProf refinement, and deals with

all kinds of refinement problems through the refinement

knowledge base, such as refinement divergence, inner errors

etc., to complete complex refinement tasks highly auto-

matically.

For principle (2), to simplify and automate the refinement

process, AutoFP is designed to be user friendly and reduce the

user’s input as much as possible. In order to reduce the steep

learning curve of Rietveld refinement for new users, the if–

then rules of the refinement knowledge base are built into the

AutoFP program code. Therefore, users can skip inputting

their own refinement knowledge. The control layer saves

every intermediate result of FullProf. If the refinement detects

errors or divergences, the control layer can automatically

revive the refinement process from the best saved inter-

mediate result. The control layer tries to find the minimum

Rwp through this strategy.
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For principle (3), it is possible for advanced users to develop

their own refinement strategies and contribute to the devel-

opment of AutoFP.

2.2. Implementation

The architecture of AutoFP and its several constituent

programming units is shown in Fig. 1. The AutoFP interface is

a fully featured GUI that enables the user to load a .pcr file,

configure the automated refinement strategy and output the

resulting files. It can also display the refinement results. The

control layer is the core of AutoFP, and it controls the UI and

uses the expert system algorithm to control the FullProf

refinement engine. PyFullProf is a Python program that reads

and writes the files of FullProf. PyFullProf is based on the

SrRietveld project (Tian et al., 2013).

Fig. 2 shows a screenshot of one of the main interfaces of

AutoFP during an automatic refinement of Y2O3 powder

diffraction data, as described in detail in the figure caption.

AutoFP incorporates most of the functionality supported by

the current versions of FullProf and is developed mainly for

Rietveld analysis (structure profile refinement) of neutron

[constant wavelength (CW) or time-of-flight (TOF)] or X-ray

powder diffraction data collected at constant or variable steps

in the scattering angle 2�. The program uses the expert system

algorithm to select a good refinement strategy (McCusker et

al., 1999), and it captures errors and attempts to recover

automatically when a refinement divergence or a FullProf

error occurs. This increases the robustness of the automatic

refinement process. The program takes Rwp as the target

function to minimize and tries to obtain the best refinement

result. In addition, the refinement speed of AutoFP is very

fast; commonly, it only takes a few minutes to perform a

classical refinement (dual core i5-4300U 1.90 GHz, 8 GB

DDR3 RAM).

In order to improve its ease of use, AutoFP provides flex-

ibility and extensibility to advanced users. AutoFP is modu-

larly designed and focuses on extensibility, so the default

behaviour of the software can be set individually. AutoFP

owns the command mode and knowledge interface. Therefore,

other programs can use it as an automatic Rietveld refinement

engine, and advanced users can implement their acquired

refinement experience in it.

2.3. The program flow chart

There are many parameters in Rietveld refinement. One

kind of parameter order is called a refinement strategy.

computer programs
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Figure 1
The architecture of AutoFP. The control layer, expert system algorithm
and PyFullProf are Python packages in the AutoFP program. FullProf is
the underlying refinement engine which can handle profile matching tasks
for X-ray diffraction (XRD), and neutron continuous wave (CW) or time-
of-flight (TOF) tasks. See text for further details.

Figure 2
A screenshot of AutoFP during refinement of Y2O3 powder diffraction data. In the ‘Auto’ tab in the right-hand panel, the ‘autoselect’ button selects and
checks the refined parameters automatically. The ‘setting’ button sets the strategy of refinement and other options, while the ‘run’ button runs the
automated refinement. The ‘open’ button loads the .pcr file into AutoFP. The bottom right-hand textbox displays messages about the refinement from
both FullProf and AutoFP. The ‘Rwp curve’ window shows the Rwp values from the automatic refinement process.



Different refinement strategies will generate very different

refinement results, some of which will be near perfect while

others will be considerably worse. AutoFP is designed to

automate the refinement process with a specific refinement

strategy, and this can be modified by users according to their

needs. To assist users, AutoFP has a default refinement

strategy which is based on the work of McCusker et al. (1999),

Rietveld (1969) and Young (1993).

AutoFP will refine the profile parameters first, then the

structural parameters and preferred orientation. The order in

which the parameters are turned on in the default strategy is as

follows: 2� zero correction, unit-cell parameters, sample

displacement, simple background correction, scale factor,

peak width, peak shape function, peak asymmetry, complex

background correction, atomic positions, atomic displacement

parameters, occupancy parameters, preferred orientation.

Although AutoFP provides a default strategy for general

Rietveld refinement, it cannot satisfy all cases. So, sometimes

writing one’s own strategy is more effective. Since AutoFP is

open source, modifying the default strategy to the user’s own

strategy is very easy.

The program flow chart is displayed in the following

scheme.

2.4. How to use AutoFP

Once the .pcr format file and diffraction data files have

been prepared correctly, there are two ways to run AutoFP.

(1) UI mode. The UI mode needs just three steps: click the

‘open’ button to load the .pcr file, click the ‘autoselect’ button

to select the parameters needed to refine automatically, and

then click the ‘run’ button to start the automatic refinement

process.

(2) Command mode. The automated refinement command

line is autofp -a file.pcr. The -a option makes AutoFP

automatically select the parameters needed to perform the

refinement.

3. Example

The following examples are chosen to show the features of

AutoFP.

3.1. Y2O3

This example is the subject of the article by Santos et al.

(2005). It shows how to perform a simple Rietveld refinement

of a high-symmetry single-phase oxide material using labora-

tory X-ray diffraction data with AutoFP. A high-quality

diffraction pattern was recorded on a bulk sample of Y2O3

using a Siemens D5000 diffractometer equipped with a Cu

tube, graphite-diffracted beam monochromator and scintilla-

tion counter (FPSchool 2013; http://www.ill.eu/en/press-and-

news/past-events/2013/fpschool-2013/documentation/.

The refinement results are shown in Fig. 3 and Table 1. The

curve of Rwp is shown in Fig. 4. The space group is Ia3, a = b =

c = 10.60397 (1) Å. Fig. 4 shows that AutoFP can complete the

computer programs
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Figure 3
The refinement result for Y2O3 using AutoFP. The R factors are Rp =
0.0674 and Rwp = 0.0723, and �2 = 2.69. The space group is Ia3, with a = b =
c = 10.60397 (1) Å.

Table 1
Rietveld refinement results for Y2O3 using AutoFP.

Sample Space group Unit cell (Å) R factors

Y2O3 Ia3 a = b = c = 10.60397 (1) Rp = 0.0674
Rwp = 0.0723
�2 = 2.69

Table 2
Rietveld refinement results for Dy0.5Sr0.5MnO3 using AuoFP.

Sample Space group Unit cell (Å) R factors

Dy0.5Sr0.5MnO3 Pbnm a = 5.40196 (4) Rp = 0.105
b = 5.41494 (0) Rwp = 0.128
c = 7.62853 (2) �2 = 3.56



refinement automatically, solve the divergence cases or Full-

Prof errors, and take Rwp as the target function to minimize.

As is shown in Fig. 3 and Table 2, the refinement result with

AutoFP is excellent.

3.2. Dy0.5Sr0.5MnO3

To demonstrate a typical application, automatic refinement

was carried out on X-ray powder diffraction patterns

measured from Dy0.5Sr0.5MnO3 (DSMO) at room temperature

using a Rigaku 18 kW D/MAX 2550 powder diffractometer

with Cu K� radiation. The Dy0.5Sr0.5MnO3 powder was

synthesized by the standard solid-state reaction method using

SrCO3 (99.99%), Dy2O3 (99.99%) and MnO2 (99.95%). The

diffractometer was operated at 40 kV and 200 mA, the 2� scan

range was from 10 to 120� with a step size of 0.02�, and the

count time was 4 s per step.

The refinement result is shown in Fig. 5 and the curve of Rwp

is shown in Fig. 4. Because DSMO is a new compound, the

LaxSr1�xMO3 structure (Pinsard et al., 1997) was used as the

initial structure to refine DSMO. The space group is Pbnm,

with a = 5.40196 (4), b = 5.41494 (0) and c = 7.62853 (2) Å.

Fig. 4 shows that AutoFP can complete the refinement

correctly and automatically, and can accomplish the task of

new structure refinement.

3.3. Other tests

PbSO4. This example is the subject of the IUCr Round

Robin (Hill, 1992), and was used to prove that AutoFP can

make an automatic Rietveld refinement of neutron-CW

diffraction data.

LaMnO3. The neutron-CW powder diffraction pattern of

LaMnO3 (Rodriguez-Carvajal et al., 1998) was measured at

the LLB diffractometer G4.2 with � = 2.59 Å.

YBaCuCoO7. The neutron powder diffraction pattern was

measured at ILL with the instrument D1A on a sample of the

compound YBa2Cu3�xCoxO7+y, with x = 0.33 (FPschool 2013;

http://www.ill.eu/press-and-news/past-events/2013/fpschool-

2013/documentation).

The refinement results and the drop-down curves of Rwp are

shown in Table 3 and Fig. 4.

4. Software distribution

AutoFP is open-source software distributed under the GPLv3

licence. It is free to use, subject to the copyright restrictions

and disclaimer, though we ask that papers reporting results

obtained using AutoFP cite this paper, as well as the paper

describing the particular refinement engine used (FullProf).

The AutoFP program and more information on it can be

obtained from the project web pages (http://pmedia.shu.edu.

cn/autofp) or by contacting Xiaopeng Cui (xpclove@126.com)

or Zhenjie Feng (fengzhenjie@shu.edu.cn).
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Figure 5
The refinement result for Dy0.5Sr0.5MnO3 using AutoFP. The R factors
are Rp = 0.105 and Rwp = 0.128, and �2 = 3.56. The space group is Pbnm,
with a = 5.40196 (4), b = 5.41494 (0) and c = 7.62853 (2) Å.
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Figure 4
The Rwp curves from AutoFP refinement for the examples of PbSO4,
Y2O3, DSMO and LaMnO3. The plot shows that AutoFP can complete
the refinement tasks automatically and solve the divergence problem to
obtain minimum Rwp values. It should be pointed out that the divergence
values are not shown in the ‘Rwp curve’ window when AutoFP is running,
because a very large divergence value will make the Rwp curve into a
single horizontal line. The whole set of Rwp data can be found in the
output file.
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