174 research outputs found

    Pattern formation of quantum jumps with Rydberg atoms

    Get PDF
    We study the nonequilibrium dynamics of quantum jumps in a one-dimensional chain of atoms. Each atom is driven on a strong transition to a short-lived state and on a weak transition to a metastable state. We choose the metastable state to be a Rydberg state so that when an atom jumps to the Rydberg state, it inhibits or enhances jumps in the neighboring atoms. This leads to rich spatiotemporal dynamics that are visible in the fluorescence of the strong transition. It also allows one to dissipatively prepare Rydberg crystals

    Pattern formation with trapped ions

    Get PDF
    Ion traps are a versatile tool to study nonequilibrium statistical physics, due to the tunability of dissipation and nonlinearity. We propose an experiment with a chain of trapped ions, where dissipation is provided by laser heating and cooling, while nonlinearity is provided by trap anharmonicity and beam shaping. The collective dynamics are governed by an equation similar to the complex Ginzburg-Landau equation, except that the reactive nature of the coupling leads to qualitatively different behavior. The system has the unusual feature of being both oscillatory and excitable at the same time. We account for noise from spontaneous emission and find that the patterns are observable for realistic experimental parameters. Our scheme also allows controllable experiments with noise and quenched disorder.Comment: 4 pages + appendi

    Antiferromagnetic phase transition in a nonequilibrium lattice of Rydberg atoms

    Get PDF
    We study a driven-dissipative system of atoms in the presence of laser excitation to a Rydberg state and spontaneous emission. The atoms interact via the blockade effect, whereby an atom in the Rydberg state shifts the Rydberg level of neighboring atoms. We use mean-field theory to study how the Rydberg population varies in space. As the laser frequency changes, there is a continuous transition between the uniform and antiferromagnetic phases. The nonequilibrium nature also leads to a novel oscillatory phase and bistability between the uniform and antiferromagnetic phases.Comment: 4 pages + appendi

    Spatiotemporal dynamics of quantum jumps with Rydberg atoms

    Get PDF
    We study the nonequilibrium dynamics of quantum jumps in a one-dimensional chain of atoms. Each atom is driven on a strong transition to a short-lived state and on a weak transition to a metastable state. We choose the metastable state to be a Rydberg state so that when an atom jumps to the Rydberg state, it inhibits or enhances jumps in the neighboring atoms. This leads to rich spatiotemporal dynamics that are visible in the fluorescence of the strong transition.Comment: 10 page

    Quantum-classical transition of correlations of two coupled cavities

    Get PDF
    We study the difference between quantum and classical behavior in a pair of nonidentical cavities with second-harmonic generation. In the classical limit, each cavity has a limit-cycle solution, in which the photon number oscillates periodically in time. Coupling between the cavities leads to synchronization of the oscillations and classical correlations between the cavities. In the quantum limit, there are quantum correlations due to entanglement. The quantum correlations persist even when the cavities are far off resonance with each other, in stark contrast with the classical case. We also find that the quantum and classical limits are connected by an intermediate regime of almost no correlations. Our results can be extended to a wide variety of quantum models

    Collective quantum jumps of Rydberg atoms

    Get PDF
    We study an open quantum system of atoms with long-range Rydberg interaction, laser driving, and spontaneous emission. Over time, the system occasionally jumps between a state of low Rydberg population and a state of high Rydberg population. The jumps are inherently collective and in fact exist only for a large number of atoms. We explain how entanglement and quantum measurement enable the jumps, which are otherwise classically forbidden.Comment: 4 page

    Vortices and the entrainment transition in the 2D Kuramoto model

    Get PDF
    We study synchronization in the two-dimensional lattice of coupled phase oscillators with random intrinsic frequencies. When the coupling KK is larger than a threshold KEK_E, there is a macroscopic cluster of frequency-synchronized oscillators. We explain why the macroscopic cluster disappears at KEK_E. We view the system in terms of vortices, since cluster boundaries are delineated by the motion of these topological defects. In the entrained phase (K>KEK>K_E), vortices move in fixed paths around clusters, while in the unentrained phase (K<KEK<K_E), vortices sometimes wander off. These deviant vortices are responsible for the disappearance of the macroscopic cluster. The regularity of vortex motion is determined by whether clusters behave as single effective oscillators. The unentrained phase is also characterized by time-dependent cluster structure and the presence of chaos. Thus, the entrainment transition is actually an order-chaos transition. We present an analytical argument for the scaling KEKLK_E\sim K_L for small lattices, where KLK_L is the threshold for phase-locking. By also deriving the scaling KLlogNK_L\sim\log N, we thus show that KElogNK_E\sim\log N for small NN, in agreement with numerics. In addition, we show how to use the linearized model to predict where vortices are generated.Comment: 11 pages, 8 figure

    Global Journalist: Iraq War and the Israeli-Palestinian Conflict

    Get PDF
    In this Sepember 26, 2002 episode of Global Journalist, host Stuart Loory and four journalists discuss the Israeli-Palestinian conflict and the upcoming war against Iraq. Guests from the US, Palestine, Israel and France discuss how the invasion of Iraq would bring impact to the Arab world and Israel, as the US is making its effort to gain support from European allies to its cause in Iraq

    Universality in the one-dimensional chain of phase-coupled oscillators

    Get PDF
    We apply a recently developed renormalization group (RG) method to study synchronization in a one-dimensional chain of phase-coupled oscillators in the regime of weak randomness. The RG predicts how oscillators with randomly distributed frequencies and couplings form frequency-synchronized clusters. Although the RG was originally intended for strong randomness, i.e. for distributions with long tails, we find good agreement with numerical simulations even in the regime of weak randomness. We use the RG flow to derive how the correlation length scales with the width of the coupling distribution in the limit of large coupling. This leads to the identification of a universality class of distributions with the same critical exponent ν\nu. We also find universal scaling for small coupling. Finally, we show that the RG flow is characterized by a universal approach to the unsynchronized fixed point, which provides physical insight into low-frequency clusters.Comment: 14 pages, 10 figure

    Gene dosage-dependent functions for phosphotyrosine-Grb2 signaling during mammalian tissue morphogenesis

    Get PDF
    AbstractBackground: The mammalian Grb2 adaptor protein binds pTyr-X-Asn motifs through its SH2 domain, and engages downstream targets such as Sos1 and Gab1 through its SH3 domains. Grb2 thereby couples receptor tyrosine kinases to the Ras-MAP kinase pathway, and potentially to phosphatidylinositol (PI) 3′-kinase. By creating a null (Δ) allele of mouse Grb2, we have shown that Grb2 is required for endoderm differentiation at embryonic day 4.0.Results: Grb2 likely has multiple embryonic and postnatal functions. To address this issue, a hypomorphic mutation, first characterized in the Caenorhabditis elegans Grb2 ortholog Sem-5, was engineered into the mouse Grb2 gene. This mutation (E89K) reduces phosphotyrosine binding by the SH2 domain. Embryos that are compound heterozygous for the null and hypomorphic alleles exhibit defects in placental morphogenesis and in the survival of a subset of migrating neural crest cells required for branchial arch formation. Furthermore, animals homozygous for the hypomorphic mutation die perinatally because of clefting of the palate, a branchial arch-derived structure. Analysis of E89K/Δ Grb2 mutant fibroblasts revealed a marked defect in ERK/MAP kinase activation and Gab1 tyrosine phosphorylation following growth factor stimulation.Conclusions: We have created an allelic series within mouse Grb2, which has revealed distinct functions for phosphotyrosine-Grb2 signaling in tissue morphogenesis and cell viability necessary for mammalian development. The placental defects in E89K/Δ mutant embryos are reminiscent of those seen in receptor tyrosine kinase-, Sos1-, and Gab1-deficient embryos, consistent with the finding that endogenous Grb2 is required for efficient RTK signaling to the Ras-MAP kinase and Gab1 pathways
    corecore