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Background naling proteins such as PI 39-kinase, Shp-2, and Crkl,
raising the possibility that Grb2 may regulate effectors inThe Grb2 adaptor protein has a central SH2 domain and

two flanking SH3 domains [1, 2]. Through its ability to addition to Ras [14–17].
bind pTyr-X-Asn motifs on autophosphorylated receptor
tyrosine kinases (RTKs) and to simultaneously engage RTKs either bind the Grb2 SH2 domain directly, or they

can recruit Grb2 through intermediate scaffolding pro-proline-rich motifs in the carboxy-terminal tail of Sos1/
Sos2, Grb2 can physically couple growth factor receptors teins such as ShcA, IRS-1, and FRS2 [18–20]. Indeed,

RTKs such as Trk and fibroblast growth factor receptorsto the activation of the Ras GTPase [3–10]. GTP-bound
Ras recognizes c-Raf, which stimulates the MAP kinase (FGFRs) are dependent on scaffolding proteins to access

Grb2 [21]. The prevalence of such Grb2 binding sitespathway as well as other potential effectors such as phos-
phatidylinositol (PI) 39-kinase and Ral-GDS [11, 12]. Ge- suggests that mammalian phosphotyrosine-Grb2 signaling

may direct a variety of biological responses in vivo. In-netic analysis of tyrosine kinase signaling pathways in
invertebrates and in the mouse has indicated that Grb2, deed, we have previously found that mouse embryos ho-

mozygous for a Grb2 null (D) allele die early in develop-and its orthologs in C. elegans and Drosophila, are critical
for the in vivo activation of the Ras-MAP kinase pathway ment because of a defect in endoderm differentiation

at E4.0 [9]. Furthermore, analysis of chimeric embryos[3, 4, 9, 13]. While the N-terminal Grb2 SH3 domain
appears to be critical for Sos1 activation, the C-terminal formed by the aggregation of Grb22/2 embryonic stem

(ES) cells and wild-type cells revealed a subsequent roleSH3 domain can engage the Gab1 docking protein; tyro-
sine-phosphorylated Gab1 binds the SH2 domains of sig- for Grb2 in the formation of the epiblast at E6.0. The



Research Paper Hypomorphic mouse Grb2 mutation Saxton et al. 663

failure of Grb2 null cells to contribute to the ectoderm gesting that a fraction of the mutants died in utero. At
E13.5–E14.5, 6 out of 22 mutant embryos obtained were(epiblast) lineage of embryo chimeras precluded investi-
hemorrhaging or edemic (Figure 2f), unlike heterozygousgation of Grb2 functions later in development, however.
(Figure 2e; n 5 47) or wild-type (n 5 16) littermates.
Furthermore, 3 out of 22 of the homozygotes displayedOne approach toward circumventing the severe effects of
abnormal development of the mandible, or lower jaw (Fig-the Grb2 null mutation on early embryogenesis would be
ure 2f). Some of the hemorrhaging mutant embryos ap-to generate a hypomorphic allele of the mouse Grb2 gene.
peared to be already dead at this stage, accounting forIn this regard, a number of mutations have been identified
the low ratio of E89K homozygotes observed at birth.in the C. elegans ortholog of Grb2, Sem-5. The Sem-5 n1779

allele causes a defect in sex myoblast migration, but unlike
Grb2 E89K/null compound heterozygotesmore severe alleles, does not induce larval lethality or a
exhibit defects in chorioallantoic fusionhighly penetrant vulvaless phenotype [22]. The n1779
and placental morphogenesismutation results in the substitution of a glutamate residue
We reasoned that because the Grb2 null embryos die atwith lysine at the BC1 position of the SH2 domain, within
implantation and the homozygous E89K animals die dur-the phosphotyrosine binding loop. This substitution re-
ing late embryogenesis or at P0, then embryos that areduces, but does not abrogate, binding of Grb2 to phos-
compound heterozygous for these two alleles might dis-phorylated proteins such as epidermal growth factor re-
play an intermediate phenotype. We therefore inter-ceptor [13] and ShcA. We have introduced the n1779
crossed animals heterozygous for the null and hypo-mutation into the mouse Grb2 gene, and have thereby
morphic (E89K) alleles. At midgestation (E9.5–E10.5),created a Grb2 hypomorphic allele. This has allowed the
compound heterozygous E89K/D embryos were presentconstruction of an allelic series that has revealed multiple in an approximately Mendelian ratio (23.8%; Table 1);

functions for Grb2 in mammalian development and cell thus, one copy of the hypomorphic allele provides suffi-
signaling. cient Grb2 signaling for implantation and epiblast forma-

tion. E89K/D embryos displayed several phenotypes not
Results and discussion explored in detail here, including abnormal heart develop-
Grb2 hypomorphic mutation ment. Together with the hemorrhaging observed in the
We engineered a point mutation in the mouse Grb2 gene E89K homozygotes, this suggests a role for Grb2 in cardio-
analogous to the C. elegans n1779 Sem-5 mutation, which vascular integrity.
results in a substitution of glutamate 89 with lysine
(E89K). To achieve this alteration, we replaced the wild- By E11.5, E89K/D embryos were no longer viable (Table
type exon 3 with one encoding the E89K substitution by 1). The chorioallantoic placenta, or labyrinth, becomes
homologous recombination in ES cells (Figure 1a–c). The essential around this time for sufficient nutrient and waste
mutation is therefore located within an otherwise normal exchange between the maternal and embryonic circula-
Grb2 locus; Western blotting of lysates from wild-type tions. The labyrinth develops in two phases, first with
and mutant embryos (Figure 1d) confirmed that the E89K the attachment of the mesodermally derived allantois to
mutation does not perturb Grb2 expression or stability. a flat plate of chorionic trophoblast cells at E8.5, followed

by folding and branching morphogenesis of the chorioal-
Although most E89K homozygous animals developed to lantoic interface and underlying blood vessels. Of the 65
term, none survived to postnatal day 1 (P1; Table 1), E89K/D embryos dissected at E9.5–E10.5, 32% (n 5 21)
indicating that the E89K mutation creates a hypomorphic showed a failure in chorioallantoic fusion (Figure 3a,b).
allele in the mouse. Homozygous mutant newborns were Histological examination of the placentas from the re-
smaller (2.43 6 0.15 cm) than their heterozygous (2.80 6 maining mutant embryos showed that, although the allan-
0.11 cm) or wild-type (2.8 6 0.12 cm) littermates. Gross tois had attached to the chorionic plate, the E89K/D mu-
autopsy failed to show significant morphological differ- tants had significantly smaller labyrinth structures. At
ences between wild-type and mutant newborns, except E9.5, the chorioallantoic surface and underlying fetopla-
that E89K homozygotes never had milk in their stomachs cental blood vessels in wild-type placentas showed exten-
and failed to fuse the secondary palate (Figure 2b; n 5 sive branching, whereas the mutants had only small folds
12). Skeletal preparations (Figure 2c,d) indicated that the of the chorioallantoic interface (Figure 3c,d). At E10.5
ossifying palate had fused at the midline in wild-type (Figure 3e–g), the morphogenesis of the E89K/D placen-
newborns, whereas the palatal shelves remained cleft in tas was more evident than at E9.5, albeit still significantly
the E89K homozygotes. Thus, the death of homozygous less than wild-type, indicating that development is slowed
mutant animals may result from failure to separate the rather than blocked. Interestingly, E89K/E89K homozy-
nasopharynx and oropharynx [23, 24]. gotes also had reduced labyrinth development, though

less severe than that observed in the E89K/D mutants.
18.6% of the animals at birth were E89K homozygotes Reduced placental function in the E89K/E89K homozy-

gotes is a probable explanation for their reduced size at(Table 1), below the expected 25% Mendelian ratio, sug-
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Figure 1

Generation and characterization of the E89K
hypomorph allele. (a) Strategy for
introducing a point mutation affecting the SH2
domain into the Grb2 gene (ii) in ES cells.
The targeting construct (i) contains a
neomycin selection cassette flanked by a pair
of loxP sites (triangles). The E89K mutation
(see [b]) was introduced by PCR. Mutant
mice derived from targeted ES clones (iii) were
crossed with mice transgenic for the cre
recombinase [46], resulting in the excision of
the neomycin cassette and generation of the
E89K allele (iv). (b) DNA sequences of the
wild-type and E89K allele surrounding the
mutation. Mutated residues appear as capital
letters, which indicate changes from E to K
at position 89 and the silent mutation
introduced to destroy the Eco47III site for
allele-specific restriction mapping. DNA
sequencing of RT-PCR products from
mutant embryos confirmed the expected
mutations in the mutant allele. (c) PCR
analysis identifies the five potential genotype
classes generated during this study. The top
panel represents the PCR used to differentiate
the wild-type and E89K alleles. The PCR
product (far left lane) is digested with Eco47III
enzyme; the E89K band is of higher
molecular weight owing to the destruction of
one cut site during the engineering of the
allele. The bottom panel shows the same
samples genotyped for the null (D) allele. (d)
Western blot analysis of lysate extracted from
wild-type (1/1), heterozygous (E89K/1),
and homozygous mutant (E89K/E89K) E9.5
embryos. The top panel is probed with anti-
p120rasGAP to show protein loading, and the
bottom panel is probed with anti-Grb2,
showing that expression and stability of the
protein is not altered by the substitution at
the BC1 position of the SH2 domain.

birth. The failure of placental development, either be- are strikingly similar. Null mutations within Grb2 and a
dominant mutation within the FGFR2 gene result in earlycause of defects in chorioallantoic attachment or labyrinth

morphogenesis, likely accounts for the death of the com- embryonic lethality at E4.0 [9, 25], whereas a null muta-
tion in FGFR2 results in defects in labyrinthine placentalpound heterozygous embryos by E11.5.
development [26] similar to that observed here. Indeed,
a number of RTKs in addition to FGFR2, including theThe biological activities of the RTK FGFR2 and Grb2

Table 1

Summary of Grb2 heterozygous null and hypomorph allele intercrosses.

Stage analyzed Wild-type Heterozygousa Mutantb

E89K/1 E10.5 22.0% (30) 49.0% (70) 29.0% (41)
intercrosses E13.5–14.5 18.4% (16) 54.0% (47) 27.6% (24)

E18.5/P0 35.4% (23) 46.1% (30) 18.6% (12)c

P1 39.0% (12) 61.0% (19) 0
E89K/1: D/1 E9.5–10.5 22.7% (62) 53.5% (146) 23.8% (65)
intercrosses E11.5 29.6% (8) 70.4% (19) 0d

a Heterozygous specimens were either E89K/1 or D/1. c These embryos often survived longer than 6 hr after birth.
b Mutant specimens were either E89K/E89K homozygotes or E89K/D d Eight resorptions were observed, which likely represent the mutant
compound heterozygotes. progeny class; the material was too degraded for genotype analysis.
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Figure 2

Grb2 hypomorph embryos exhibit defects in
secondary palate fusion. (a,b) Scanning
electron micrographs [48] of the palates of
wild-type (a) and homozygous mutant (b)
animals at P0 indicate that the palatal shelves
have failed to fuse in the homozygous mutant
embryos (arrows), a process normally
completed by E15 of development. (c,d)
Alizarian red/alician blue staining [49] of P0
skeletons indicates that the neural crest cell-
derived bone that divides the nasopharynx and
oropharynx does not fuse in the homozygous
mutant embryo (asterisk). (e,f) Whole-mount
photos of wild-type (e) and homozygous mutant
(f) embryos at E14.0 of development shows
the hemorrhaging that was observed in
27.3% (n 5 22) of homozygous mutant
embryos dissected at E13.5–E14.5. The
arrow points to the lower jaw, or mandible, a
neural crest cell/b2-derived structure that
does not develop normally in all E89K
homozygotes.

epidermal growth factor receptor (EGFR) [27] and Met Grb2 is to activate the Ras-MAPK cascade, it is significant
that mutations in the Sos1 [29] and MEK1 [30] genes also[28], are required for normal development of the placental

labyrinth. Given that a major biochemical function for lead to defective labyrinth development. Collectively,

Figure 3

E89K/D compound heterozygous embryos
exhibit defects in placental development. (a,b)
Whole-mount views of wild-type (a) and E89K/
D (b) embryos at E9.5 illustrate the failure of
the allantois to fuse with the chorion in many
of the compound heterozygous embryos.
(c–g) Hematoxylin- and eosin-stained
histological sections of placentas at E9.5
(c,d) and E10.5 (e–g). The asterisks indicate
the positions of fetoplacental blood vessels.
The arrows indicate the sites of intrusion of
stromal cells into the chorionic plate. Note
that at E9.5, the chorioallantoic interface in
E89K/D mutants is relatively flat in contrast
to the wild-type placenta in which extensive
interdigitations of the chorionic trophoblast,
stroma, and underlying blood vessels are
present. By E10.5, the chorioallantoic
interface has undergone some morphogenesis
in E89K/D embryos, but is severely reduced
compared to wild-type and is comparable to
a normal E9.5 placenta. Note that the E89K/
E89K placentas show an intermediate
phenotype. al, allantois; uc, umbilical cord;
ch, chorionic trophoblast cells; sp,
spongiotrophoblast.
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Figure 4 early passage cultures isolated from different embryos,
indicating that the biochemical defect observed in the
mutant fibroblasts is indeed due to reduced Grb2 signal-
ing. These data show that MAP kinase activation is defec-
tive in the E89K/D mutant MEFs.

As noted above, the C-terminal SH3 domain of Grb2 binds
the scaffolding protein Gab1 in a fashion that appears to
recruit Gab1 to RTKs, resulting in Gab1 phosphorylation
and its subsequent binding to effectors such as PI 39-
kinase and Shp-2. PI-(3,4,5)-P3 generated by PI 39-kinase
activates targets involved in cell survival such as the Akt
protein kinase, while Shp-2 can potentiate MAP kinase
signaling [16]. Interestingly, Gab1 mutant embryos display
a placental defect, suggesting that the Grb2-Gab1 interac-
tion may be of physiological relevance [31, 32]. Given
that recent data suggest that Grb2 can link the EGFR to
Gab1 [33], we examined Gab1 tyrosine phosphorylation
in wild-type and E89K/D mutant cells stimulated with
EGF (Figure 4b). Gab1 was heavily tyrosine phosphory-
lated in response to EGF stimulation of wild-type cells,
but this was barely detectable in the E89K/D mutant

MAP kinase activation and Gab1 tyrosine phosphorylation are MEFs. These data provide direct genetic evidence that
compromised in E89K/D MEFs. MEFs derived from wild-type or Grb2 is required for efficient Gab1 tyrosine phosphoryla-E89K/D embryos were quiesced and stimulated with 5 ng/ml of EGF

tion, and raise the possibility that Grb2 signaling to Gab1,for 5 min at 378C (1) or PBS control (2). (a) Twenty mg of total
cell lysate was resolved by SDS-PAGE and then analyzed by as well as to Sos1, may be involved in placental morpho-
immunoblotting with anti-phospho-ERK, anti-ERK1,2, or anti-Grb2 genesis.
antibodies. (b) Lysates from the same preparation were
immunoprecipitated with anti-Gab1 antibodies. Resolved

Grb2 is required for branchial arch developmentimmunoprecipitates were immunoblotted with anti-phosphotyrosine or
anti-Gab1 antibodies. Intriguingly, the branchial arches beyond arch 1 (b1) failed

to fully form in the E89K/D mutant embryos (Figure 5a,b).
Histological sections demonstrated that branchial arch 2
(b2) is not present in mutant embryos observed at E9–E10these data begin to outline a signaling pathway that regu-
(Figure 5c,d). The ectoderm covering and endoderm lin-lates chorioallantoic placental morphogenesis, most likely
ing were present, but the mesenchymal interior that com-by mediating RTK signaling in the labyrinthine spongio-
prises most of the branchial arch tissue was absent. Thetrophoblast layer.
severe branchial arch defects in the E89K/D embryos are
especially interesting, given that the E89K/E89K embryosIf the E89K/D genotype causes a defect in MAP kinase
exhibited dysmorphogenesis of branchial arch-derivedactivation, this should be detectable biochemically. To
skull elements such as the mandible and palate. Thus,explore this point, we isolated early passage mouse em-
the phenotype observed in the compound heterozygotesbryo fibroblasts (MEFs) from E89K/D and wild-type E9.5
may reflect a more severe manifestation of the subtleembryos, and compared the activation of the ERK1 and
phenotypes observed in the hypomorph homozygotes.ERK2 MAP kinases in these cells following EGF stimula-

tion. Quiescent, early passage MEFs were treated with
The majority of the mesenchymal cells of the branchialEGF (5 ng/ml, 5 min, 378C), or were left unstimulated,
arches are descendants of neural crest (NC) cells. NC cellsand were then analyzed for MAP kinase activation by
delaminate from the dorsal neuroepithelium and migrateimmunoblotting of a whole cell lysate with phospho-
throughout the embryo to form a wide range of deriva-specific ERK antibodies (Figure 4a). EGF stimulation
tives, including most of the peripheral nervous system,strongly activated ERK1 and ERK2 in wild-type MEFs,
all epithelial pigment cells, and many of the skull ele-but ERK phosphorylation was severely compromised in
ments [34, 35]. Cad6 is a marker for the NC cells thatEGF-treated E89K/D mutant cells. Immunoblotting with
will eventually populate the branchial arches [36]; in bothanti-Grb2 antibodies showed that the mutant cells express
wild-type and mutant embryos (Figure 5e,f), Cad6 expres-approximately half as much Grb2 as do wild-type cells,
sion defined two streams of cells extending from the dorsalas would be expected from the presence of the protein
neural tube, identifying cells that will colonize b1 and b2,null allele combined with normal expression of the E89K

mutant allele. Similar results were obtained from multiple respectively. Expression of AP-2, another marker for the
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Figure 5

Compound heterozygous embryos exhibit
defects in branchial arch development. (a,b)
A comparison of SEM images [48] of an E9.5
wild-type (a) and an E10.0 E89K/D (b)
embryo highlights the failure of the arches
beyond b1 to develop in the compound
heterozygotes. Furthermore, in the compound
heterozygous embryos, b1 is not as highly
developed as in the wild-type embryo, showing
reduction in both the maxillary and
mandibular components (white arrow). (c,d)
Hematoxylin- and eosin-stained transverse
histological sections just below the otic vesicle
highlight the failure of b2 to develop in the
E89K/D mutant (d) compared to wild-type
embryos (c). (e,f) Whole-mount RNA in situ
[50] probing for expression of Cad6. Two
streams of neural crest cells are born at the
dorsal neural tube and migrate towards b1 and
b2 on the ventral side of the embryo
(arrowheads). Expression was comparable
between the wild-type ([e]; n 5 5) and the
E89K/D mutant ([f]; n 5 5/6) embryos. (g,h)
Whole-mount staining for anti-neurofilament
(NF160, Sigma) in wild-type (g) and mutant
(h) E10.5 embryos indicated that the neural
crest-derived cranial ganglia develop normally
in the compound heterozygous embryos, but
the cranial nerves wander at the dorsal body
wall because their targets do not form. (i,j)
Toluidine blue-stained transverse plastic
sections [47] of wild-type (i) and E89K/D
mutant (j) embryos at the level of the otic
vesicle show the pycnotic nuclei that cluster
at this level in the mutant embryos. (k,l)
Transmission electron micrographs [38, 39, the compound heterozygote (l) are dying, as component of b1; ec, ectoderm; m,
47] of the pycnotic nuclei indicate that the indicated by the apoptotic bodies (white mesenchyme; en, endoderm; ov, otic vesicle;
mesenchyme cells of the wild-type specimen arrowhead). b, branchial arch; mx, maxillary hv, head vein; da, dorsal aorta; bv, blood
(k) are healthy, whereas the mesenchyme of component of b1; md, mandibular vessel; *, b2 region in the mutant embryos.

NC cells of the craniofacial mesenchyme [23, 37], was Figure 5i). This is significant for two reasons. First, this
location is in the migration path of NC cells, which arealso maintained in the E89K/D embryos (n 5 3; data not

shown). NC cells that originate at rhombomere 4 (r4) of born at r4 and migrate toward the ventral body to b2;
second, pycnotic nuclei indicate the presence of dyingthe hindbrain give rise to the mesenchyme of b2 and

contribute to cranial nerves VII/VIII. Staining for neurofi- cells [38, 39]. Transmission electron microscopy showed
that while there were few dying cells in the mesenchymelament indicated that all the cranial nerves and ganglia

formed in the E89K/D embryos (Figure 5g,h), although of wild-type embryos (n 5 3; Figure 5k), there were
numerous apoptotic bodies in the E89K/D specimens (n 5cranial nerve X appears to be disorganized. Strikingly,

cranial nerve VII, which normally projects into b2, wan- 3; Figure 5l), which is a hallmark of programmed cell
death [38, 39]. Furthermore, only mesenchymal cells wereders at the dorsal body edge in the compound heterozy-

gotes, likely because its intended target, b2, does not dying, as cells of other origins that reside in this region,
such as endothelial cells (Figure 5l) or mesenchymal cellsdevelop normally. Together, these data show that the b2-

destined NC population is born and begins its migration of b1 (data not shown), were healthy. This indicates that
in the absence of appropriate Grb2 signaling, cells in thispath normally, and that other r4-derived NC descendants

develop normally in the compound heterozygous em- embryonic location, potentially NC cells en route to b2,
die by apoptosis.bryos.

Examination of transverse serial sections showed that These results suggest that Grb2 may be required to pro-
mote the survival of a subset of cranial NC cells. Suchlarge clusters of pycnotic nuclei were present in mutant

embryos at the level of the otic vesicle (n 5 15; Figure cells require survival factors that are often transmitted by
RTKs, including Trk for neurogenic cells [40], Kit for5j) that were not observed in wild-type embryos (n 5 11;
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melanocytes [41], and Ret for enteric ganglion precursors guing that mice that are deficient in specific signaling
genes show defects that are very similar to those observed[42]. Of particular interest, animals lacking the EGF re-
in Grb2 mutants. In particular, mutations in RTKs [26]ceptor have an increased incidence of cleft palate [24] and
as well as in Sos1 [29] and the MAP kinase MEK1 [30]embryos that are deficient for a5 integrin show increased
all cause abnormalities in placental labyrinth developmentapoptosis of cranial NC cells [43], indicating that phospho-
reminiscent of those seen in Grb2 E89K/D mutant em-tyrosine signaling is a requisite for craniofacial morpho-
bryos. These findings raise the possibility that RTK signal-genesis. Furthermore, MAP kinases [44] and PI 39-kinase/
ing through the Grb2-Sos1 complex activates the Ras-MAPAkt activated by Ras and Gab1 [45] can transmit cell
kinase pathway in a fashion that is critical for placen-survival signals. We cannot be certain whether Grb2 is
tal morphogenesis. Consistent with this scheme, E89K/Dacting in a cell-autonomous fashion to promote the sur-
mutant cells are severely impaired in RTK-induced ERKvival of the cells that die in Grb2-deficient embryos, or
activation. In addition, the Gab1 scaffolding protein haswhether this is a secondary phenotype resulting from a
been implicated both as a binding partner for the C-ter-primary defect within the surrounding cells, tissues, or
minal Grb2 SH3 domain and in placental development,environment. Nonetheless, the phenotype of compound
and we find that RTK-stimulated Gab1 tyrosine phos-heterozygous embryos strongly suggests that Grb2 links
phorylation is very markedly reduced in E89K/D MEFs.phosphotyrosine signals to a survival pathway during
These data provide definitive genetic evidence that Grb2branchial arch formation.
mediates Gab1 phosphorylation, and suggest that a Grb2-
Gab1 complex may participate in the development of theNull mutations can be very revealing; however, they suffer
placental labyrinth. By comparing mouse mutant pheno-the disadvantage of only identifying the earliest stage at
types and the signaling properties of mutant cells, wewhich a gene has a critical role. Strategies involving the
have begun to define the biochemical pathways throughgeneration of conditional alleles can potentially circum-
which Grb2 may exert its effects during the later stagesvent these problems, but depend upon efficient inactiva-
of mammalian development.tion of the mutated gene. An approach that has been

especially valuable in the analysis of gene function in
Materials and methodsinvertebrates is the isolation of alleles with reduced bio-
E89K mutationlogical function. Although hypomorphic alleles of mam-
Glutamate residue 89 lies in a 121 bp exon that codes for the amino-malian genes have been obtained in the past, these usually
terminal region of the SH2 domain. To introduce the E89K mutation, a

have been created serendipitously. Here, we have de- mutating primer (59-gGA ctT gct ctc tcg gat cag gaa-39; capital letters
indicate the mutated nucleotides) was used together with E47-80T (59-scribed a rational approach toward creating a hypomorphic
cag agc cag gta aga gcc cca-39) in a polymerase chain reaction tomutation in the mouse Grb2 gene, based on an impaired
generate a 280 bp fragment. This fragment carried the E89K mutation,allele of the orthologous sem-5 gene in C. elegans, which
with nucleotides changed from GAG (glutamate) to AAG (lysine), imme-

compromises the ability of the SH2 domain to bind phos- diately followed by a silent mutation at the serine residue, with nucleotides
changed from AGC to TCC to destroy the Eco47III restriction site (Figurephorylated sites. By analyzing embryos homozygous for
1b). The PCR product was digested with Eco47III and subcloned intothis hypomorph allele or compound heterozygous with
the corresponding Eco47III sites in the 3 kb EcoRI-XbaI genomic frag-the null allele, we have identified novel functions for
ment, which was subsequently used as the targeting right arm; the 3.2

Grb2 signaling during placental and craniofacial morpho- kb BamHI-EcoRI fragment served as the left arm (Figure 1a [i]). One
clone, C5, yielded germline transmission of the E89K (neomycin1) allelegenesis.
(iii). To excise the neomycin cassette from the germline DNA, mutant
mice were bred to a mouse strain transgenic for the cre recombinaseIn the placenta, Grb2 appears to be important for the
[46] whose expression was directed by the CMV promotor. Littermates

expansion and branching of the chorioallantoic interface derived from these crosses were analyzed for excision of the neomycin
to form the labyrinth cells, whereas Grb2 is essential for cassette (by Southern blotting and PCR) and the presence of the E89K

substitution (by PCR and restriction analysis; [iv]). To further confirmthe survival of specific NC cells within the embryo proper.
the E89K mutation and the DNA sequence of the mutated 121 bp exon,These results indicate that the same core phosphotyro-
RT-PCR and sequence analysis were performed on total RNA isolated

sine-Grb2 signaling pathway has multiple successive and from mutant embryos.
distinct functions during the development of the embryo.
Furthermore, responses such as endoderm differentiation, Genotype analysis

Isolated DNA samples amplified with PCRXhoB (59-ttg ggt cca ggt gaaplacental morphogenesis, NC survival, and palate forma-
cac cag ga-39) and E47-80T (above) oligonucleotides. PCR productstion show different sensitivities to the level of Grb2. This
were purified and digested with Eco47III to differentiate the wild-type

suggests that molecules that regulate the potency of sig- and E89K alleles. In a separate polymerase chain reaction, PCRXhoB
and Neo1 (59-cct tct atc gcc ttc ttg acg cg-39) were used to amplifynaling through the core Grb2 pathway may determine its
the null allele. Products were then subjected to agarose gel electrophore-biological output.
sis and genotype determined on the basis of fragment size (Figure 1c).

Analysis of mutant embryos and newborn animals has Western blot analysis
revealed that Grb2 has a variety of biological functions Litters from E89K/1 intercrosses were dissected at E9.5; the embryos

were immediately frozen on dry ice and the yolk sacs were used forthat are critical for mammalian development. It is intri-
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