632 research outputs found

    An Optimal Medium Access Control with Partial Observations for Sensor Networks

    Get PDF
    We consider medium access control (MAC) in multihop sensor networks, where only partial information about the shared medium is available to the transmitter. We model our setting as a queuing problem in which the service rate of a queue is a function of a partially observed Markov chain representing the available bandwidth, and in which the arrivals are controlled based on the partial observations so as to keep the system in a desirable mildly unstable regime. The optimal controller for this problem satisfies a separation property: we first compute a probability measure on the state space of the chain, namely the information state, then use this measure as the new state on which the control decisions are based. We give a formal description of the system considered and of its dynamics, we formalize and solve an optimal control problem, and we show numerical simulations to illustrate with concrete examples properties of the optimal control law. We show how the ergodic behavior of our queuing model is characterized by an invariant measure over all possible information states, and we construct that measure. Our results can be specifically applied for designing efficient and stable algorithms for medium access control in multiple-accessed systems, in particular for sensor networks

    A breach in plant defences: Pseudomonas syringae pv. actinidiae targets ethylene signalling to overcome Actinidia chinensis pathogen responses

    Get PDF
    Ethylene interacts with other plant hormones to modulate many aspects of plant metabolism, including defence and stomata regulation. Therefore, its manipulation may allow plant pathogens to overcome the host’s immune responses. This work investigates the role of ethylene as a virulence factor for Pseudomonas syringae pv. actinidiae (Psa), the aetiological agent of the bacterial canker of kiwifruit. The pandemic, highly virulent biovar of this pathogen produces ethylene, whereas the biovars isolated in Japan and Korea do not. Ethylene production is modulated in planta by light/dark cycle. Exogenous ethylene application stimulates bacterial virulence, and restricts or increases host colonisation if performed before or after inoculation, respectively. The deletion of a gene, unrelated to known bacterial biosynthetic pathways and putatively encoding for an oxidoreductase, abolishes ethylene production and reduces the pathogen growth rate in planta. Ethylene production by Psa may be a recently and independently evolved virulence trait in the arms race against the host. Plantand pathogen-derived ethylene may concur in the activation/suppression of immune responses, in the chemotaxis toward a suitable entry point, or in the endophytic colonisation

    Complex genetic patterns in closely related colonizing invasive species

    Get PDF
    Anthropogenic activities frequently result in both rapidly changing environments and translocation of species from their native ranges (i.e., biological invasions). Empirical studies suggest that many factors associated with these changes can lead to complex genetic patterns, particularly among invasive populations. However, genetic complexities and factors responsible for them remain uncharacterized in many cases. Here, we explore these issues in the vase tunicate Ciona intestinalis (Ascidiacea: Enterogona: Cionidae), a model species complex, of which spA and spB are rapidly spreading worldwide. We intensively sampled 26 sites (N= 873) from both coasts of North America, and performed phylogenetic and population genetics analyses based on one mitochondrial fragment (cytochrome c oxidase subunit 3–NADH dehydrogenase subunit I, COX3-ND1) and eight nuclear microsatellites. Our analyses revealed extremely complex genetic patterns in both species on both coasts. We detected a contrasting pattern based on the mitochondrial marker: two major genetic groups in C. intestinalis spA on the west coast versus no significant geographic structure in C. intestinalis spB on the east coast. For both species, geo-graphically distant populations often showed high microsatellite-based genetic affinities whereas neighboring ones often did not. In addition, mitochondrial and nuclear markers provided largely inconsistent genetic patterns. Multiple factors, including random genetic drift associated with demographic changes, rapid selection due to strong local adaptation, and varying propensity for human-mediated propagule dispersal could be responsible for the observed genetic complexities

    Cross-continental emergence of Nannizziopsis barbatae disease may threaten wild Australian lizards

    Get PDF
    Members of the genus Nannizziopsis are emerging fungal pathogens of reptiles that have been documented as the cause of fatal mycoses in a wide range of reptiles in captivity. Cases of severe, proliferative dermatitis, debility and death have been detected in multiple free-living lizard species from locations across Australia, including a substantial outbreak among Eastern water dragons (Intellagama lesueurii) in Brisbane, Queensland. We investigated this disease in a subset of severely affected lizards and identified a clinically consistent syndrome characterized by hyperkeratosis, epidermal hyperplasia, dermal inflammation, necrosis, ulceration, and emaciation. Using a novel fungal isolation method, histopathology, and molecular techniques, we identified the etiologic agent as Nannizziopsis barbatae, a species reported only once previously from captive lizards in Australia. Here we report severe dermatomycosis caused by N. barbatae in five species of Australian lizard, representing the first cases of Nannizziopsis infection among free-living reptiles, globally. Further, we evaluate key pathogen and host characteristics that indicate N. barbatae-associated dermatomycosis may pose a concerning threat to Australian lizards

    Evolutionary factors affecting Lactate dehydrogenase A and B variation in the Daphnia pulex species complex

    Get PDF
    Background: Evidence for historical, demographic and selective factors affecting enzyme evolution can be obtained by examining nucleotide sequence variation in candidate genes such as Lactate dehydrogenase (Ldh). Two closely related Daphnia species can be distinguished by their electrophoretic Ldh genotype and habitat. Daphnia pulex populations are fixed for the S allele and inhabit temporary ponds, while D. pulicaria populations are fixed for the F allele and inhabit large stratified lakes. One locus is detected in most allozyme surveys, but genome sequencing has revealed two genes, LdhA and LdhB. Results: We sequenced both Ldh genes from 70 isolates of these two species from North America to determine if the association between Ldh genotype and habitat shows evidence for selection, and to elucidate the evolutionary history of the two genes. We found that alleles in the pond-dwelling D. pulex and in the lake-dwelling D. pulicaria form distinct groups at both loci, and the substitution of Glutamine (S) for Glutamic acid (F) at amino acid 229 likely causes the electrophoretic mobility shift in the LDHA protein. Nucleotide diversity in both Ldh genes is much lower in D. pulicaria than in D. pulex. Moreover, the lack of spatial structuring of the variation in both genes over a wide geographic area is consistent with a recent demographic expansion of lake populations. Neutrality tests indicate that both genes are under purifying selection, but the intensity is much stronger on LdhA. Conclusions: Although lake-dwelling D. pulicaria hybridizes with the other lineages in the pulex species complex, it remains distinct ecologically and genetically. This ecological divergence, coupled with the intensity of purifying selection on LdhA and the strong association between its genotype and habitat, suggests that experimental studies would be useful to determine if variation in molecular function provides evidence that LDHA variants are adaptive

    Accuracy and Safety of Scout Dose Resin Yttrium-90 Microspheres for Radioembolization Therapy Treatment Planning: A Prospective Single-Arm Clinical Trial

    Get PDF
    PURPOSE: To compare the accuracy and safety of 0.56 GBq resin yttrium-90 ( MATERIALS AND METHODS: This prospective single-arm clinical trial (Clinicaltrials.gov: NCT04172714) recruited patients with HCC. Patients underwent same-day mapping with MAA and scout RESULTS: Thirty patients were treated using 19 segmental and 14 nonsegmental (ie, 2 contiguous segments or nonsegmental) therapies. MAA had weak LSF, moderate TNR, and moderate TD linear correlation with Rx CONCLUSIONS: Compared with MAA, scou

    Voxel-Based Dosimetry Predicting Treatment Response and Related Toxicity in Hcc Patients Treated With Resin-Based Y90 Radioembolization: A Prospective, Single-Arm Study

    Get PDF
    BACKGROUND: There is an increasing body of evidence indicating Y90 dose thresholds for tumor response and treatment-related toxicity. These thresholds are poorly studied in resin Y90, particularly in hepatocellular carcinoma (HCC). PURPOSE: To evaluate the efficacy of prospective voxel-based dosimetry for predicting treatment response and adverse events (AEs) in patients with HCC undergoing resin-based Y90 radioembolization. MATERIALS AND METHODS: This correlative study was based on a prospective single-arm clinical trial (NCT04172714), which evaluated the efficacy of low/scout (555 MBq) activity of resin-based Y90 for treatment planning. Partition model was used with goal of tumor dose (TD) \u3e 200 Gy and non-tumoral liver dose (NTLD) \u3c 70 Gy for non-segmental therapies. Single compartment dose of 200 Gy was used for segmentectomies. Prescribed Y90 activity minus scout activity was administered for therapeutic Y90 followed by Y90-PET/CT. Sureplan® (MIM Software, Cleveland, OH) was used for dosimetry analysis. Treatment response was evaluated at 3 and 6 months. Receiver operating characteristic curve determined TD response threshold for objective response (OR) and complete response (CR) as well as non-tumor liver dose (NTLD) threshold that predicted AEs. RESULTS: N = 30 patients were treated with 33 tumors (19 segmental and 14 non-segmental). One patient died before the first imaging, and clinical follow-up was excluded from this analysis. Overall, 26 (81%) of the tumors had an OR and 23 (72%) had a CR. A mean TD of 253 Gy predicted an OR with 92% sensitivity and 83% specificity (area under the curve (AUC = 0.929, p \u3c 0.001). A mean TD of 337 Gy predicted a CR with 83% sensitivity and 89% specificity (AUC = 0.845, p \u3c 0.001). A mean NTLD of 81 and 87 Gy predicted grade 3 AEs with 100% sensitivity and 100% specificity in the non-segmental cohort at 3- and 6-month post Y90, respectively. CONCLUSION: In patients with HCC undergoing resin-based Y90, there are dose response and dose toxicity thresholds directly affecting outcomes. CLINICAL TRIAL NUMBER: NCT04172714

    Event structure semantics of (controlled) reversible CCS

    Get PDF
    CCSK is a reversible form of CCS which is causal, meaning that ac- tions can be reversed if and only if each action caused by them has already been reversed; there is no control on whether or when a computation reverses. We pro- pose an event structure semantics for CCSK. For this purpose we define a cat- egory of reversible bundle event structures, and use the causal subcategory to model CCSK. We then modify CCSK to control the reversibility with a rollback primitive, which reverses a specific action and all actions caused by it. To define the event structure semantics of rollback, we change our reversible bundle event structures by making the conflict relation asymmetric rather than symmetric, and we exploit their capacity for non-causal reversibility
    corecore