1,108 research outputs found
Operationalizing Ecological Resilience Concepts for Managing Species and Ecosystems at Risk
This review provides an overview and integration of the use of resilience concepts to guide natural resources management actions. We emphasize ecosystems and landscapes and provide examples of the use of these concepts from empirical research in applied ecology. We begin with a discussion of definitions and concepts of ecological resilience and related terms that are applicable to management. We suggest that a resilience-based framework for management facilitates regional planning by providing the ability to locate management actions where they will have the greatest benefits and determine effective management strategies. We review the six key components of a resilience-based framework, beginning with managing for adaptive capacity and selecting an appropriate spatial extent and grain. Critical elements include developing an understanding of the factors influencing the general and ecological resilience of ecosystems and landscapes, the landscape context and spatial resilience, pattern and process interactions and their variability, and relationships among ecological and spatial resilience and the capacity to support habitats and species. We suggest that a spatially explicit approach, which couples geospatial information on general and spatial resilience to disturbance with information on resources, habitats, or species, provides the foundation for resilience-based management. We provide a case study from the sagebrush biome that illustrates the use of geospatial information on ecological and spatial resilience for prioritizing management actions and determine effective strategies
Editorial: Operationalizing the Concepts of Resilience and Resistance for Managing Ecosystems and Species at Risk
Ecological resilience is essential for maintaining ecosystem services in an era of rapid global change, but successful attempts to operationalize it for managing ecosystems at risk have been limited. Clear formulation and application of ecological resilience concepts can guide ecosystem management so that it enhances the capacity of ecosystems to resist and recover from disturbances and provides adaptive space for periods of ecological reorganization. As originally defined, ecological resilience measures the amount of perturbation required to change an ecosystem from one set of processes and structures to a different set of processes and structures, or the amount of disturbance that a system can withstand before it shifts into a new regime or alternative stable state (Holling, 1973). In applied ecology, ecological resilience is increasingly used to evaluate the capacity of ecosystems to absorb, persist, and adapt to inevitable and often unpredictable change, and to use that information to determine the most effective management strategies (e.g., Chambers et al., 2014; Curtin and Parker, 2014; Pope et al., 2014; Seidl et al., 2016).
As the scale and magnitude of ecological change increases, operationalizing ecological resilience for ecosystem management becomes ever more important. To date, much of the literature on ecological resilience has focused on theory, definitions, and broad conceptualizations (e.g., Gunderson, 2000; Folke et al., 2004, 2010; Walker et al., 2004; Folke, 2006; Gunderson et al., 2010). Much of the more applied research has focused on the importance of species diversity and species functional attributes in affecting responses to stress and disturbance (e.g., Pope et al., 2014; Angeler and Allen, 2016; Baho et al., 2017; Roberts et al., 2018).
Recent, interdisciplinary research demonstrates that information on the relationships between an ecosystemâs environmental characteristics (climate, topography, soils, and potential biota) and its response to stress and disturbance provides a viable mechanism for assessing ecosystem resilience and relative risks (Chambers et al., 2014; Hessburg et al., 2016; Cushman et al., 2017; Kaszta et al., 2019). Approaches have been developed that enable application of resilience concepts at the scales needed for effective management of ecosystems experiencing progressive and deleterious change. For example, in the sagebrush biome of the western U.S. the concepts of resilience to fire and resistance to non-native invasive annual grasses have recently been used in an interagency framework to enhance conservation and restoration and help prevent listing of greater sage-grouse (Centrocercus urophasianus) under the Endangered Species Act (Chambers et al., 2017). In ecosystems around the globe, levels of ecological stress and disturbance are increasing while resources for natural resources management remain limited. Fully developing the capacity to operationalize the concept of ecological resilience can enable managers to prioritize the types and locations of management activities needed to optimize ecosystem conservation and restoration
The Ursinus Weekly, March 8, 1965
Freshmen women receive UC colors, learn meaning in 35th annual observance ⢠William James scholar to speak in faculty Forum ⢠Faculty agrees to publish next Weekly issue ⢠Carousel features queen and court, Cub and Key seven: Fine decorations, Al Raymond band add to evening ⢠Psych Club hears Phila. social worker ⢠Two seniors win electrochemical scholarships ⢠Students produce House hearing on Watkins case ⢠33 men join fraternities: Five frats bid ⢠Applications urged for political internship plan ⢠Track notice ⢠Editorial: Fraternity rushing ⢠Red China today: Still growing ⢠Letters to the editor ⢠Book review: Good grief, it\u27s Candy ⢠Snellbelles smash East Stroudsburg 63-48, return match no match: Regester, Kohn lead offense with 38; Day, Smiley control defensive boards ⢠Wrestlers end, tie last match ⢠Fircroft takes the field; Spring finds us ready ⢠UC grad presents flag flown over South Pole ⢠UC student lectures to DAR ⢠Advice column ⢠Dean\u27s listhttps://digitalcommons.ursinus.edu/weekly/1242/thumbnail.jp
Long-term impacts of wildfire and logging on forest soils
Soils are a fundamental component of terrestrial ecosystems, and play key roles in biogeochemical cycles and the ecology of microbial, plant and animal communities. Global increases in the intensity and frequency of ecological disturbances are driving major changes in the structure and function of forest ecosystems, yet little is known about the long-term impacts of disturbance on soils. Here we show that natural disturbance (fire) and human disturbances (clearcut logging and post-fire salvage logging) can significantly alter the composition of forest soils for far longer than previously recognized. Using extensive sampling across a multi-century chronosequence in some of the tallest and most carbon-dense forests worldwide (southern Australian, mountain ash (Eucalyptus regnans) forests), we provide compelling evidence that disturbance impacts on soils are evident up to least eight decades after disturbance, and potentially much longer. Relative to long-undisturbed forest (167 years old), sites subject to multiple fires, clearcut logging or salvage logging were characterized by soils with significantly lower values of a range of ecologically important measures at multiple depths, including available phosphorus and nitrate. Disturbance impacts on soils were most pronounced on sites subject to compounding perturbations, such as multiple fires and clearcut logging. Long-lasting impacts of disturbance on soil can have major ecological and functional implications.Thank you for the following groups for funding: the Paddy Pallin Foundation, Centre of Biodiversity Analysis, the Ecological Society of Australia and the Holsworth Wildlife Research Endowment fund
Letter to the Editor Concerning Simultaneous, Single-Particle Measurements of Size and Loading Give Insights into the Structure of Drug-Delivery Nanoparticles
The vexing error of excess variance in the sizing of single particles
degrades accuracy in applications ranging from quality control of nanoparticle
products to hazard assessment of nanoplastic byproducts. The particular
importance of lipid nanoparticles for vaccine and medicine delivery motivates
this comment on a publication in ACS Nano. In ref 1, the
benchmark measurements of a nanoparticle standard manifest large errors of the
size distribution that contradict the claim of validation. Such errors can bias
the correlation of fluorescence intensity as an optical proxy for the molecular
loading of lipid nanoparticles and give misleading insights from power-law
models of intensitysize data. Looking forward, measurement error models have
the potential to address this widespread issue.Comment: Peer reviewed and pending acceptance by ACS Nan
Mass-Producible 2D-MoS2âImpregnated Screen-Printed Electrodes
This document is the Accepted Manuscript version of a Published Work that appeared in final form in
ACS Applied Materials and Interfaces, copyright Š American Chemical Society after peer review and technical editing by the publisher.
To access the final edited and published work see https://pubs.acs.org/doi/10.1021/acsami.7b05104Two-dimensional molybdenum disulfide (2D-MoS2) screen-printed electrodes (2D-MoS2-SPEs) have been designed, fabricated, and evaluated toward the electrochemical oxygen reduction reaction (ORR) within acidic aqueous media. A screen-printable ink has been developed that allows for the tailoring of the 2D-MoS2 content/mass used in the fabrication of the 2D-MoS2-SPEs, which critically affects the observed ORR performance. In comparison to the graphite SPEs (G-SPEs), the 2D-MoS2-SPEs are shown to exhibit an electrocatalytic behavior toward the ORR which is found, critically, to be reliant upon the percentage mass incorporation of 2D-MoS2 in the 2D-MoS2-SPEs; a greater percentage mass of 2D-MoS2 incorporated into the 2D-MoS2-SPEs results in a significantly less electronegative ORR onset potential and a greater signal output (current density). Using optimally fabricated 2D-MoS2-SPEs, an ORR onset and a peak current of approximately +0.16 V [vs saturated calomel electrode (SCE)] and â1.62 mA cmâ2, respectively, are observed, which exceeds the â0.53 V (vs SCE) and â635 ÎźA cmâ2 performance of unmodified G-SPEs, indicating an electrocatalytic response toward the ORR utilizing the 2D-MoS2-SPEs. An investigation of the underlying electrochemical reaction mechanism of the ORR within acidic aqueous solutions reveals that the reaction proceeds via a direct four-electron process for all of the 2D-MoS2-SPE variants studied herein, where oxygen is electrochemically favorably reduced to water. The fabricated 2D-MoS2-SPEs are found to exhibit no degradation in the observed achievable current over the course of 1000 repeat scans. The production of such inks and the resultant mass-producible 2D-MoS2-SPEs mitigates the need to modify post hoc an electrode via the drop-casting technique that has been previously shown to result in a loss of achievable current over the course of 1000 repeat scans. The 2D-MoS2-SPEs designed, fabricated, and tested herein could have commercial viability as electrocatalytic fuel cell electrodes because of being economical as a result of their scales of economy and inherent tailorability. The technique utilized herein to produce the 2D-MoS2-SPEs could be adapted for the incorporation of different 2D nanomaterials, resulting in SPEs with the inherent advantages identified above
Resource Requirements for Fault-Tolerant Quantum Simulation: The Transverse Ising Model Ground State
We estimate the resource requirements, the total number of physical qubits
and computational time, required to compute the ground state energy of a 1-D
quantum Transverse Ising Model (TIM) of N spin-1/2 particles, as a function of
the system size and the numerical precision. This estimate is based on
analyzing the impact of fault-tolerant quantum error correction in the context
of the Quantum Logic Array (QLA) architecture. Our results show that due to the
exponential scaling of the computational time with the desired precision of the
energy, significant amount of error correciton is required to implement the TIM
problem. Comparison of our results to the resource requirements for a
fault-tolerant implementation of Shor's quantum factoring algorithm reveals
that the required logical qubit reliability is similar for both the TIM problem
and the factoring problem.Comment: 19 pages, 8 figure
2DâHexagonal Boron Nitride ScreenâPrinted BulkâModified Electrochemical Platforms Explored towards Oxygen Reduction Reactions
A lowâcost, scalable and reproducible approach for the mass production of screenâprinted electrode (SPE) platforms that have varying percentage mass incorporations of 2D hexagonal boron nitride (2DâhBN) (2DâhBN/SPEs) is demonstrated herein. These novel 2DâhBN/SPEs are explored as a potential metalâfree electrocatalysts towards oxygen reduction reactions (ORRs) within acidic media where their performance is evaluated. A 5% mass incorporation of 2DâhBN into the SPEs resulted in the most beneficial ORR catalysis, reducing the ORR onset potential by ca. 200 mV in comparison to bare/unmodified SPEs. Furthermore, an increase in the achievable current of 83% is also exhibited upon the utilisation of a 2DâhBN/SPE in comparison to its unmodified equivalent. The screenâprinted fabrication approach replaces the lessâreproducible and timeâconsuming dropcasting technique of 2DâhBN and provides an alternative approach for the largeâscale manufacture of novel electrode platforms that can be utilised in a variety of application
- âŚ