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ABSTRACT 35 

Soils are a fundamental component of terrestrial ecosystems, and play key roles in 36 

biogeochemical cycles and the ecology of microbial, plant and animal communities. Global 37 

increases in the intensity and frequency of ecological disturbances are driving major changes 38 

in the structure and function of forest ecosystems, yet little is known about the long-term 39 

impacts of disturbance on soils. Here we show that natural disturbance (fire) and human 40 

disturbances (clearcut logging and post-fire salvage logging) can significantly alter the 41 

composition of forest soils for far longer than previously recognized. Using extensive 42 

sampling across a multi-century chronosequence in some of the tallest and most carbon-dense 43 

forests worldwide (southern Australian, mountain ash (Eucalyptus regnans) forests), we 44 

provide compelling evidence that disturbance impacts on soils are evident up to least eight 45 

decades after disturbance, and potentially much longer. Relative to long-undisturbed forest 46 

(167 years old), sites subject to multiple fires, clearcut logging or salvage logging were 47 

characterized by soils with significantly lower values of a range of ecologically important 48 

measures at multiple depths, including available phosphorus and nitrate. Disturbance impacts 49 

on soils were most pronounced on sites subject to compounding perturbations, such as 50 

multiple fires and clearcut logging. Long-lasting impacts of disturbance on soil can have 51 

major ecological and functional implications. 52 
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Natural disturbances such as fire are major drivers of the structure and function of terrestrial 59 

ecosystems worldwide, and influence key biotic and abiotic patterns and processes1–4. 60 

Climate change and increases in human disturbances, such as logging, have altered natural 61 

fire regimes, resulting in an increase in large-scale fires across terrestrial ecosystems over the 62 

past few decades1,5,6. These compounding disturbances are driving significant changes in 63 

the structure and function of ecosystems7,8.  64 

While the effects of natural and human disturbances are well characterized for biotic 65 

communities, little is known about their long-term impacts on the abiotic components of soil 66 

environments, despite their importance for ecosystem function9–11. Soils play key roles in 67 

(1) the demography, interspecific interactions and community structure of plant and microbial 68 

communities, (2) biogeochemical cycles, (3) biomass production and environmental filtering 69 

and buffering, and (4) climate change mitigation through the sequestration of carbon and 70 

other greenhouse gases12–17. Limited knowledge about the impacts of disturbances on soils 71 

hinders the ability to predict the long-term responses of ecosystems to increasing natural and 72 

human disturbance10,16,18,19. In a period of rapid, global environmental and climatic 73 

change during which disturbances such as fire and anthropogenic landuse changes are 74 

predicted to increase and intensify, it is critical to quantify their respective impacts on soils to 75 

facilitate management and planning3,20,21. 76 

Here, we quantify the impact of natural disturbance (fire) and human disturbances (clearcut 77 

and post-fire salvage logging) on soil measures across a multi-century chronosequence in the 78 

mountain ash forests of southeastern Australia. Typical fire regimes in these forests are 79 

characterized by infrequent, high-intensity fires that have historically occurred every 75–150 80 

years22. However, the frequency of these fires has increased and some areas have 81 

experienced multiple high-severity fires over the past century, including those in 1926, 1932, 82 

1939, 1983 and most recently in 20098. Fires in 1939, 1983 and 2009 burned large areas of 83 



mountain ash forest (> 150,000 ha in 1939, 17,250 ha in 1983 and 53,500 ha in 200923). In 84 

addition, these forests have been subject to clearcut logging since the 1970s and post-fire 85 

salvage logging since the late 1930s8,24. Climatic changes within southeastern Australia are 86 

predicted to increase the prevalence of hot and dry conditions over the next few decades25. 87 

These predictions, coupled with the increasing coverage of high-severity- fire-prone logging 88 

regrowth (aged 7–35 years) will potentially increase the frequency of high-intensity stand-89 

replacing fires in these forests20,21,25,26.  90 

From 729 soil cores collected across 81 sites, we used generalized linear models to 91 

investigate the influence of nine disturbance history categories varying in stand age (8, 34, 78 92 

and 167 years), fire frequency (0, 1, 2 and 3 fires in recorded history since 1850), clearcut 93 

and salvage logging events and environmental variables on measures of organic carbon, 94 

macro soil nutrients (ammonium nitrogen (ammonium), nitrate nitrogen (nitrate), available 95 

phosphorus, available potassium, sulfur), micronutrients (boron (hot CaCl2), diethylene 96 

triamine pentaacetic acid (DTPA) iron, DTPA manganese, DTPA copper, DTPA zinc), 97 

exchangeable cations (exc.) (exc. aluminium, exc. calcium, exc. magnesium, exc. Potassium 98 

and exc. sodium), soil chemistry (pH(CaCl2), electrical conductivity (conductivity)), 99 

sand/silt/clay (%) and soil moisture (% dry mass) (gravimetric moisture content) from two 100 

depths of forest soil (0–10 cm and 20–30 cm)27.  101 

Multi-decadal disturbance impacts on forest soils 102 

We discovered that fire, clearcut logging and salvage logging significantly influenced soil 103 

measures in the 0–10 cm and 20–30 cmlayers of soil. Significant effects were evident up to at 104 

least eight decades post-fire and three decades post-clearcut logging (P < 0.001 to P = 0.05) 105 

(Supplementary Tables 3 and 4). For instance, nitrate and available phosphorus were 106 

significantly lower across the chronosequence at sites burnt and/or logged and aged 78, 34 107 



and 8 years old, relative to long-undisturbed sites (P < 0.001 to P = 0.05) (Fig. 1, 108 

Supplementary Fig. 1 and Supplementary Table 3 and 4). 109 

 110 

 111 

Fig. 1 | Disturbance histories influence soil measures along a multi-century chronosequence. 112 

Predicted values of vital soil measures ( ± standard error) in relation to disturbance history 113 

category, with trend lines. Predictions are shown for a single parent rock type (type 3: 114 

Supplementary Table 2), Australian soil classification type (dermosol) and the mean 115 

elevation, slope and abundance of dominant plant life forms for each respective disturbance 116 

history category. See Supplementary Tables 3 and 4 for a complete list of the influence of all 117 

environmental factors. The y axis lists disturbance history categories with the year of 118 

occurrence of each disturbance event (F = fire, CC = clearcut, SL = salvage logged). Credit: 119 

photographs taken by Esther Beaton and David Lindenmayer. 120 



Relative to sites burnt once, forest stands burnt twice in recorded history (since 1850) were 121 

characterized by significantly lower levels of ammonium, nitrate, organic carbon, available 122 

phosphorus, sulfur, DTPA iron, boron and exchangeable aluminium cations in the 0–10 cm 123 

layer of soil (P < 0.001 to P = 0.02), and ammonium, organic carbon, available phosphorus, 124 

exchangeable potassium and aluminum cations, and soil moisture in the lower layer of soil 125 

(20–30 cm depth) (P < 0.001 to P = 0.04) (Fig. 2 and Supplementary Tables 5 and 6). In 126 

contrast, soil pH(CaCl2) was significantly higher in the 0–10 cm layer of soil, relative to sites 127 

burnt once (P = 0.01) (Supplementary Table 5).  128 

In forest stands burnt three times, ammonium, sulfur, exchangeable aluminium cations and 129 

DTPA iron were significantly lower in the top 0–10 cm of soil, relative to sites subject to one 130 

fire (P < 0.001 to P = 0.05) (Fig. 2 and Supplementary Tables 5 and 6). In contrast, available 131 

potassium and pH(CaCl2) were significantly higher in the 0–10 cm of soil (P < 0.001) and 132 

exchangeable cations were significantly higher in the 0–10 cm and 20–30 cm layers of soil, 133 

relative to sites burnt once (P < 0.001 to P = 0.02) (Fig. 2 and Supplementary Tables 5 and 6). 134 

Sites subject to compounding disturbances, such as multiple fires and clearcut logging or 135 

post-fire salvage logging, consistently had the lowest values of soil measures across the 136 

chronosequence,relative to long-undisturbed sites (P < 0.05) (Fig. 1 and Supplementary 137 

Tables 3 and 4). Specifically, clearcut logging resulted in significantly lower levels of 138 

ammonium, nitrate, available phosphorus, available potassium, DTPA zinc, DTPA copper, 139 

boron and exchangeable cations in the 0–10 cm of soil (P < 0.001 to P = 0.04), and available 140 

potassium, ammonium, organic carbon, available phosphorus, exchangeable cations and soil 141 

moisture in the lower 20–30 cm layer of soil, relative to unlogged forest (P < 0.001 to P = 142 

0.04) (Supplementary Tables 5 and 6). Furthermore, clearcut logged sites had a significantly 143 

higher sand content in the 0–10 cm of soil, compared to unlogged sites (P = 0.01). Salvage 144 

logged sites had significantly lower ammonium, DTPA iron, boron and exchangeable cations 145 



in the 0–10 cm layer of soil (P < 0.001 to P = 0.04), and exchangeable sodium and boron in 146 

the 20–30 cm layer of soil, relative to unlogged forest (P < 0.001) (Fig. 2 and Supplementary 147 

Table 5 and 6) (see Supplementary Information for further details). 148 
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 159 

Fig. 2 | The pervasive impacts of multiple fires and logging on soil measures. Coefficients 160 

from generalized linear models of each soil measure with respect to disturbance type, 161 

parent rock and Australian soil classification, elevation, slope and the abundance of 162 

dominant plant life forms (parent rock type, Australian soil classification, elevation, slope 163 

and the abundance of dominant plant life forms not displayed here). Model factors = 164 

number of fires, clearcut and salvage logging, parent rock and Australian soil classification; 165 

covariates = elevation, slope and the abundance of dominant plant life forms. Note that 166 

available phosphorus levels in the 0–10 cm were log-transformed, and in the 20–30 cm were 167 

square-root transformed. A complete list of the influence of the factors and covariates 168 

generated using these models is provided in Supplementary Tables 5 and 6. 169 
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Historical impacts on soil measures 173 

By analysing a subset of our data with identical stand age (8 years) but with different prior 174 

disturbance histories, we demonstrate that fire and clearcut logging significantly influence 175 

key soil measures even when controlling for age/successional effects. Sites clearcut in 2009 176 

were characterized by significantly lower concentrations of nitrate, available phosphorus and 177 

available potassium in the top 0–10 cm layer of soil (P < 0.001 to P = 0.03), and ammonium, 178 

organic carbon, available phosphorus and available potassium in the 20–30 cm of soil, 179 

relative to similarly aged unlogged sites (P < 0.001 to P = 0.04). Sites burnt twice (last in 180 

2009) resulted in significantly lower levels of available phosphorus and sulfur in the 0–10 cm 181 

of soil (P = 0.02 to P = 0.03) and of ammonium, organic carbon and available potassium in 182 

the 20–30 cm of soil, relative to similarly aged sites burnt once (P < 0.001 to P = 0.02). Sites 183 

burnt three times (last in 2009) had significantly lower levels of sulfur in the 0–10 cm of soil 184 

(P < 0.01), and higher levels of available potassium, relative to similarly aged sites burnt 185 

once (P < 0.001) (Fig. 3 and Supplementary Table 7).  186 

 187 



 188 

Fig. 3 | the impact of fire and logging in similarly aged forests on soil measures. Coefficients 189 

from generalized linear models of each soil measure in similarly aged sites (last disturbed in 190 

2009) with respect to disturbance type, parent rock and Australian soil classification, 191 

elevation, slope and the abundance of dominant plant life forms. Model factors =  number of 192 

fires, clearcut and salvage logging, parent rock and Australian soil classification; covariates = 193 

 elevation, slope and the abundance of dominant plant life forms. Note that nitrate levels in 0–194 

10 cm were square-root transformed. A complete list of the influence of the factors and 195 

covariates generated using these models is provided in Supplementary Table 7. 196 
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Implications of long-term impacts on forest soils 199 

We discovered that both natural and human disturbances can have long-term effects on forest 200 

soils. Soil temperatures can exceed 500 °C during high-intensity fires and result in the loss of 201 

soil nutrients, organic carbon and organic matter through volatilization and postfire erosion, 202 

which can reduce soil fertility10,18,28,29. Consistent with other studies, we found multiple 203 

fires resulted in lower levels of soil measures, across both soil depths, relative to long-204 

undisturbed forests10. In contrast to our discoveries, the impacts of a single fire on forest 205 

soils have been previously found to be short-term, and can result in an increase in plant 206 

productivity, decomposition and microbial activity10,18,28. However, we found that a single 207 

fire event can result in significantly lower levels of key measures, such as nitrate nitrogen and 208 

available phosphorus, that persist for at least eight decades post-fire, relative to long-209 

undisturbed sites. These long-lasting impacts also were seen in the 20–30 cm soil layer, 210 

which indicates that these post-fire effects may not only be attributed to changes in key soil 211 

measures, but probably indicate post-fire erosion and nutrient leaching, and reflect changes in 212 

biological processes and composition28–30. 213 

Logging impacts observed in this study were highly significant in both the short and mid term 214 

(8 and 34 years), and result from the high-intensity combination of physical disturbance 215 

(clearing of forest with machinery) and post-logging ‘slash’ burning (of remaining 216 

vegetation)31. These disturbances can expose the forest floor18,compact the soil32, volatilize 217 

soil nutrients28 and redistribute organic matter28,33, resulting in the release of large amounts 218 

of CO2 into the atmosphere (Fig. 4)33. These impacts can alter plant–soil–microbial 219 

dynamics and subsequently decomposition rates and carbon storage, and result in the 220 

leaching of dissolved organic carbon and nitrogen, and the depletion of base cations, reducing 221 

overall site productivity3,18,28,34. Given the long-lasting impacts of fire, we suggest that the 222 

logging-related depletion of key soil measures may act as a precursor for longer-term, and 223 



potentially severe changes in soil composition33. Multi-decadal logging impacts occur in 224 

other large-tree, slow turnover forests, such as boreal forests (which experience losses in soil 225 

carbon and nitrogen), and can take up to a century to recover3,9,18,19,28,33,35. The long-226 

lasting impacts of both fire and clearcut logging in mountain ash ecosystems indicate that the 227 

abiotic soil environments of this (and possibly other) forest ecosystems may be maladapted to 228 

frequent, high-intensity disturbances that exceed natural disturbance return intervals3,28. 229 

Therefore, predicted changes to global disturbance patterns, such as increasing fire intensity 230 

and frequency, could result in severe declines in key soil measures in the long term, with 231 

major ecological and functional implications3.  232 
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 246 

Fig. 4 | Post-disturbance processes and pathways that influence and impact abiotic soil 247 

environments. White arrows indicate influential relationships and flow-on effects associated 248 

with disturbance in soil environments. For example, fire and clearcut logging can alter the 249 

structural integrity of soils, which can impede the water and nutrient holding capacity of soils 250 

and subsequently result in nutrient leaching and erosion, potentially impacting plant 251 

productivity. Credit: images provided by Elle Bowd, David Lindenmayer and David Blair. 252 
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In mountain ash forests and other slow-turnover forests, vegetation rapidly regenerates after 259 

stand-replacing disturbances36,37.This growth is supported by an increase in light and the 260 

availability of phosphorus and nitrogen from surface ash deposits38. Further inputs of these 261 

key nutrients are a product of self-thinning and litterfall39, microbial activity40 and above-262 

ground biological fixation from species such as Acacias, which can dominate post-263 

disturbance regrowth and offset losses in nitrogen within nine years post-disturbance41. 264 

Despite these biochemical inputs, our results demonstrate that significantly lower 265 

concentrations of key nutrients such as nitrate and available phosphorus are still evident up to 266 

eight decades post-fire and three decades post logging, with the lowest measures found in 267 

highly disturbed forests subject to compounding disturbances. We did not measure the uptake 268 

rate of nutrients in the surrounding vegetation, which may explain some deficits within the 269 

soil in some ecosystems42. However, when controlling for successional stage, we found 270 

unlogged sites burnt in 2009 consistently had higher estimates of key soil measures relative to 271 

similarly aged sites logged in 2009. This comparison indicates that disturbance intensityand 272 

frequency is a major factor in determining the composition of forest soils, regardless of stand 273 

age and nutrient uptake (Fig. 3). 274 

Recommendations for forest management 275 

 We have empirically demonstrated long-term natural and human disturbance impacts on 276 

forest soils. Climate change and human disturbances are projected to increase large stand-277 

replacing fires globally3,43,44. This will probably result in substantial long-term losses of 278 

crucial soil measures, which can effect ecosystem function and forest productivity and 279 

growth over the medium to long term18,45–47. To maintain vital soil nutrient pools and 280 

preserve the key functions that soils have in ecosystems, such as carbon sequestration and the 281 

regulation of plant and microbial community productivity, land managers should consider the 282 

impacts of current and future disturbances on soils in ecosystem assessments and land-use 283 



management and planning. Specifically, perturbations such as fire (outside the historical fire 284 

return interval of 75–150 years22) and clearcut and post-fire salvage logging should be 285 

limited wherever possible, especially in areas previously subject to these disturbances. 286 

Aboveground ecosystem legacies that occur in highly fertile, long-undisturbed sites, such as 287 

large old trees, are diminishing globally, and can take over a century to recover from the 288 

impacts of disturbance48. Our findings suggest that below-ground abiotic soil environments 289 

may take a similar amount of time to recover. 290 
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