171 research outputs found

    The Non-Professional Theatre in Louisiana, 1900-1925.

    Get PDF

    Bringing Space to the Classroom Through STEM Education Providing Extreme Low Earth Orbit Missions Using ThinSats

    Get PDF
    The future of Space Science depends on our ability to attract and engage students into Science, Technology, Engineering and Mathematics (STEM) fields. Authentic, hands-on experience with space applications enhances engagement and learning in the STEM disciplines and can help to attract disinterested students to STEM careers. The Virginia Commercial Space Flight Authority (Virginia Space), Twiggs Space Lab, LLC (TSL), Orbital ATK, NearSpace Launch, Inc. (NSL), and NASA Wallops Flight Facility, have collaboratively developed the ThinSat Program, providing student teams the opportunity to design, develop, test, and monitor their own experimental payload which will be integrated into a pico-satellite and launched from the second stage of Orbital ATK’s Antares Rocket. The goal of the program is to provide students the opportunity to lead and participate in the development of a spacecraft payload through its life cycle over the course of an academic year. The student experience will be enhanced with classroom visits and videos created by the team to educate the students on satellite manufacturing, environmental testing, satellite integration, spaceport, launch vehicle, range and spacecraft operations. The ThinSat Program will provide a unique and important STEM opportunity for students to develop critical skills in systems engineering and space science that will complement existing programs

    Systemic Autoimmunity and Lymphoproliferation Are Associated with Excess IL-7 and Inhibited by IL-7Rα Blockade

    Get PDF
    Lupus is characterized by disturbances in lymphocyte homeostasis, as demonstrated by the marked accumulation of activated/memory T cells. Here, we provide evidence that proliferation of the CD8+ precursors for the accumulating CD4–CD8– T cells in MRL-Faslpr lupus-predisposed mice is, in part, driven by commensal antigens. The ensuing lymphadenopathy is associated with increased production of IL-7 due to expansion of fibroblastic reticular cells, the primary source of this cytokine. The excess IL-7 is not, however, consumed by CD4–CD8– T cells due to permanent down-regulation of IL-7Rα (CD127), but instead supports proliferation of autoreactive T cells and progression of autoimmunity. Accordingly, IL-7R blockade reduced T cell activation and autoimmune manifestations even when applied at advanced disease stage. These findings indicate that an imbalance favoring production over consumption of IL-7 may contribute to systemic autoimmunity, and correction of this imbalance may be a novel therapeutic approach in lymphoproliferative and autoimmune syndromes

    Mini-Membrane Evaporator for Contingency Spacesuit Cooling

    Get PDF
    The next-generation Advanced Extravehicular Mobility Unit (AEMU) Portable Life Support System (PLSS) is integrating a number of new technologies to improve reliability and functionality. One of these improvements is the development of the Auxiliary Cooling Loop (ACL) for contingency crewmember cooling. The ACL is a completely redundant, independent cooling system that consists of a small evaporative cooler--the Mini Membrane Evaporator (Mini-ME), independent pump, independent feedwater assembly and independent Liquid Cooling Garment (LCG). The Mini-ME utilizes the same hollow fiber technology featured in the full-sized AEMU PLSS cooling device, the Spacesuit Water Membrane Evaporator (SWME), but Mini-ME occupies only approximately 25% of the volume of SWME, thereby providing only the necessary crewmember cooling in a contingency situation. The ACL provides a number of benefits when compared with the current EMU PLSS contingency cooling technology, which relies upon a Secondary Oxygen Vessel; contingency crewmember cooling can be provided for a longer period of time, more contingency situations can be accounted for, no reliance on a Secondary Oxygen Vessel (SOV) for contingency cooling--thereby allowing a reduction in SOV size and pressure, and the ACL can be recharged-allowing the AEMU PLSS to be reused, even after a contingency event. The first iteration of Mini-ME was developed and tested in-house. Mini-ME is currently packaged in AEMU PLSS 2.0, where it is being tested in environments and situations that are representative of potential future Extravehicular Activities (EVA's). The second iteration of Mini-ME, known as Mini-ME2, is currently being developed to offer more heat rejection capability. The development of this contingency evaporative cooling system will contribute to a more robust and comprehensive AEMU PLSS

    Spacesuit Water Membrane Evaporator; An Enhanced Evaporative Cooling Systems for the Advanced Extravehicular Mobility Unit Portable Life Support System

    Get PDF
    Spacesuit Water Membrane Evaporator - Baseline heat rejection technology for the Portable Life Support System of the Advanced EMU center dot Replaces sublimator in the current EMU center dot Contamination insensitive center dot Can work with Lithium Chloride Absorber Radiator in Spacesuit Evaporator Absorber Radiator (SEAR) to reject heat and reuse evaporated water The Spacesuit Water Membrane Evaporator (SWME) is being developed to replace the sublimator for future generation spacesuits. Water in LCVG absorbs body heat while circulating center dot Warm water pumped through SWME center dot SWME evaporates water vapor, while maintaining liquid water - Cools water center dot Cooled water is then recirculated through LCVG. center dot LCVG water lost due to evaporation (cooling) is replaced from feedwater The Independent TCV Manifold reduces design complexity and manufacturing difficulty of the SWME End Cap. center dot The offset motor for the new BPV reduces the volume profile of the SWME by laying the motor flat on the End Cap alongside the TCV

    Transmission ecology of canine parvovirus in a multi-host, multi-pathogen system

    Get PDF
    Understanding multi-host pathogen maintenance and transmission dynamics is critical for disease control. However, transmission dynamics remain enigmatic largely because they are difficult to observe directly, particularly in wildlife. Here, we investigate the transmission dynamics of canine parvovirus (CPV) using state-space modelling of 20-years of CPV serology data from domestic dogs and African lions in the Serengeti ecosystem. We show that, although vaccination reduces the probability of infection in dogs, and despite indirect enhancement of population seropositivity as a result of vaccine shedding, the vaccination coverage achieved has been insufficient to prevent CPV from becoming widespread. CPV is maintained by the dog population and has become endemic with ~3.5-year cycles and prevalence reaching ~80%. While the estimated prevalence in lions is lower, peaks of infection consistently follow those in dogs. Dogs exposed to CPV are also more likely to become infected with a second multihost pathogen, canine distemper virus. However, vaccination can weaken this coupling raising questions about the value of monovalent versus polyvalent vaccines against these two pathogens. Our findings highlight the need to consider both pathogen- and host-level community interactions when seeking to understand the dynamics of multi-host pathogens and their implications for conservation, disease surveillance and control programmes

    Cross‐species transmission and evolutionary dynamics of canine distemper virus during a spillover in African lions of Serengeti National Park

    Get PDF
    The outcome of pathogen spillover from a reservoir to a novel host population can range from a “dead‐end” when there is no onward transmission in the recipient population, to epidemic spread and even establishment in new hosts. Understanding the evolutionary epidemiology of spillover events leading to discrete outcomes in novel hosts is key to predicting risk and can lead to a better understanding of mechanisms of emergence. Here we use a Bayesian phylodynamic approach to examine cross‐species transmission and evolutionary dynamics during a canine distemper virus spillover event causing clinical disease and population decline in an African lion population (Panthera leo) in the Serengeti Ecological Region between 1993 and 1994. Using 21 near‐complete viral genomes from four species we found that this large‐scale outbreak was likely ignited by a single cross‐species spillover event from a canid reservoir to non‐canid hosts less than one year before disease detection and explosive spread of CDV in lions. Cross‐species transmission from other non‐canid species likely fueled the high prevalence of CDV across spatially structured lion prides. Multiple lines of evidence suggest that spotted hyenas (Crocuta crocuta) could have acted as the proximate source of CDV exposure in lions. We report thirteen nucleotide substitutions segregating CDV strains found in canids and non‐canids. Our results are consistent with the hypothesis that virus evolution played a role in CDV emergence in non‐canid hosts following spillover during the outbreak, and suggests that host barriers to clinical infection can limit outcomes of CDV spillover in novel host species

    Science Overview of the Europa Clipper Mission

    Get PDF
    The goal of NASA’s Europa Clipper mission is to assess the habitability of Jupiter’s moon Europa. After entering Jupiter orbit in 2030, the flight system will collect science data while flying past Europa 49 times at typical closest approach distances of 25–100 km. The mission’s objectives are to investigate Europa’s interior (ice shell and ocean), composition, and geology; the mission will also search for and characterize any current activity including possible plumes. The science objectives will be accomplished with a payload consisting of remote sensing and in-situ instruments. Remote sensing investigations cover the ultraviolet, visible, near infrared, and thermal infrared wavelength ranges of the electromagnetic spectrum, as well as an ice-penetrating radar. In-situ investigations measure the magnetic field, dust grains, neutral gas, and plasma surrounding Europa. Gravity science will be achieved using the telecommunication system, and a radiation monitoring engineering subsystem will provide complementary science data. The flight system is designed to enable all science instruments to operate and gather data simultaneously. Mission planning and operations are guided by scientific requirements and observation strategies, while appropriate updates to the plan will be made tactically as the instruments and Europa are characterized and discoveries emerge. Following collection and validation, all science data will be archived in NASA’s Planetary Data System. Communication, data sharing, and publication policies promote visibility, collaboration, and mutual interdependence across the full Europa Clipper science team, to best achieve the interdisciplinary science necessary to understand Europa
    corecore