32,289 research outputs found
Studying the small scale ISM structure with supernovae
AIMS. In this work we explore the possibility of using the fast expansion of
a Type Ia supernova photosphere to detect extra-galactic ISM column density
variations on spatial scales of ~100 AU on time scales of a few months.
METHODS. We constructed a simple model which describes the expansion of the
photodisk and the effects of a patchy interstellar cloud on the observed
equivalent width of Na I D lines. Using this model we derived the behavior of
the equivalent width as a function of time, spatial scale and amplitude of the
column density fluctuations.
RESULTS. The calculations show that isolated, small (<100 AU) clouds with Na
I column densities exceeding a few 10^11 cm^-2 would be easily detected. In
contrast, the effects of a more realistic, patchy ISM become measurable in a
fraction of cases, and for peak-to-peak variations larger than ~10^12 cm^-2 on
a scale of 1000 AU.
CONCLUSIONS. The proposed technique provides a unique way to probe the
extra-galactic small scale structure, which is out of reach for any of the
methods used so far. The same tool can also be applied to study the sub-AU
Galactic ISM structure.Comment: 6 pages, 3 figures. Accepted for publication in Astronomy &
Astrophysic
Triple mode Cepheid masses
Unconventional composition structures are proposed to explain the periods of the triple mode Cepheid aC And. A strong Cepheid wind appears to enrich helium in the convection zones down to about 60,000 K or 70,000 K. Then some downward partial mixing occurs to the bottom of a layer with about 1-q = .0005 of the stellar mass. It was found that AC And was not unlike anomalous Cepheids. However, masses of betwen one and two solar masses are suggested and the population is more likely a type two
Fast algorithm for border bases of Artinian Gorenstein algebras
Given a multi-index sequence , we present a new efficient algorithm
to compute generators of the linear recurrence relations between the terms of
. We transform this problem into an algebraic one, by identifying
multi-index sequences, multivariate formal power series and linear functionals
on the ring of multivariate polynomials. In this setting, the recurrence
relations are the elements of the kerne l\sigma of the Hankel operator
$H$\sigma associated to . We describe the correspondence between
multi-index sequences with a Hankel operator of finite rank and Artinian
Gorenstein Algebras. We show how the algebraic structure of the Artinian
Gorenstein algebra \sigma\sigma yields the
structure of the terms $\sigma\alpha N nAK[x 1 ,. .. , xnIHIA$ and the tables of multiplication by the variables in these
bases. It is an extension of Berlekamp-Massey-Sakata (BMS) algorithm, with
improved complexity bounds. We present applications of the method to different
problems such as the decomposition of functions into weighted sums of
exponential functions, sparse interpolation, fast decoding of algebraic codes,
computing the vanishing ideal of points, and tensor decomposition. Some
benchmarks illustrate the practical behavior of the algorithm
Theory of One-Channel vs. Multi-Channel Kondo Effects for Ce Impurities
We introduce a model for Ce impurities in cubic metals which exhibits
competition between the Fermi-liquid fixed point of the single channel Kondo
model and the non-Fermi-liquid fixed point of the two- and three-channel Kondo
models. Using the non-crossing approximation and scaling theory, we find: (i) A
possible three-channel Kondo effect between the one- and two-channel regimes in
parameter space. (ii) The sign of the thermopower is a fixed point diagnostic.
(iii) Our results will likely survive the introduction of additional and
conduction states. We apply this model to interpret the non-Fermi liquid alloy
LaCeCuSi.Comment: 13 pages, Revtex, To appear in Phys. Rev. Let
The Wish-lists: some Comments
We provide brief comments on some common threads arising from the `wishlists' set out in some of the other papers in this volume. The discussion is necessarily incomplete: in particular we have dealt only with points for which a reasonably compact answer seems possible
Blind Normalization of Speech From Different Channels
We show how to construct a channel-independent representation of speech that
has propagated through a noisy reverberant channel. This is done by blindly
rescaling the cepstral time series by a non-linear function, with the form of
this scale function being determined by previously encountered cepstra from
that channel. The rescaled form of the time series is an invariant property of
it in the following sense: it is unaffected if the time series is transformed
by any time-independent invertible distortion. Because a linear channel with
stationary noise and impulse response transforms cepstra in this way, the new
technique can be used to remove the channel dependence of a cepstral time
series. In experiments, the method achieved greater channel-independence than
cepstral mean normalization, and it was comparable to the combination of
cepstral mean normalization and spectral subtraction, despite the fact that no
measurements of channel noise or reverberations were required (unlike spectral
subtraction).Comment: 25 pages, 7 figure
- …