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Abstract
We provide brief comments on some common threads arising from the ‘wish-
lists’ set out in some of the other papers in this volume. The discussion is
necessarily incomplete: in particular we have dealt only with points for which
a reasonably compact answer seems possible.

1 Introduction

The wish-lists are wide-ranging and raise issues of varying difficulties, ranging up to the seemingly
impossible. The following comments concern just some of the topics raised.

2 Combination of independent sets of data

In the simplest situation there are m independent sets of data from each of which a common parameter θ
can be estimated, representing for example some constant of interest. Separate analyses of the individual
sets give estimates t1, . . . , tm with uncorrelated estimates of the variances s2

1, . . . , s
2
m. For an initial

discussion ignore errors in the s2
j .

If there are no additional sources of variation and the studies do indeed estimate the same unknown,
there is the implicit model

tj = θ + εj,

where the εj are independent Gaussian errors of zero mean and variances estimated by s2
j . The parameter

θ is estimated by weighted least squares or equivalently by ordinary least squares applied to a modified
version of the model, namely

tj/sj = θ/sj + εj/sj,

where now the errors have unit variance. The estimate is

θ̃ =
Σtj/s

2
j

Σ1/s2
j

,

with
var(θ̃) =

1
Σ1/s2

j

.

Importantly also the residual sum of squares from the modified model, namely

Σ(tj/sj − θ̃/sj)2 = Σt2j/s
2
j − θ̃2Σ1/s2

j ,

has under the model a chi-squared distribution with m− 1 degrees of freedom.
The argument can be refined, essentially by an empirical Bayes approach, to allow for errors

in estimating the variances. The main practical point is that there can be major drawbacks to giving
relatively high weight to individual estimates that have very small values of s2

j arising by chance.
Suppose now that the chi-squared test indicates clear heterogeneity, that is, the tj vary too much.

There are a number of possible explanations:

– the internal estimates of variance are unrealistically small
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– there may be a small number of anomalous values
– there may be characteristics of the different studies which if entered into a regression equation for

the tj account for the additional variation.

If none of these is applicable and provided m is not too small, for example is at least, say, 10 it
may be reasonable to suppose that there is an additional source of random error producing inter-study
variation and to replace the starting model by

tj = θ + ηj + εj ,

where the εj are as before and the ηj are independent random variables of zero mean and unknown
variance σ2

η .
If in fact that variance were known, the least squares estimate of θ is

Σtj/(s2
j + σ2

η)
Σ1/(s2

j + σ2
η)

a value intermediate between the simple weighted mean θ̃ and the unweighted mean Σtj/m. The com-
ponent of variance σ2

η can be estimated by maximum likelihood or, slightly less efficiently, by equating
a sum of squares to its expectation. The assumptions involved in this formulation are quite strong and
estimation of σ2

η is fragile if m is small. When the estimates are based on Poisson-distributed counts,
the variances are functions of the counts themselves and this involves some changes in any more refined
formulae. The additive representation for additional variation may be better replaced by a multiplicative
form.

These issues are treated in more depth in [2].

3 Comparison of fit of a small number of models

Suppose first there are just two models neither of which is nested within the other. Two broad approaches
might be considered. There are formidable practical difficulties in most situations with a Bayesian dis-
cussion, not so much connected with specifying the prior probabilities of the two models as with the
conditional densities of the (different) parameters within each model. Unless these priors can be speci-
fied at least approximately on external evidence there is difficulty in computing the posterior probabilities
required for model assessment.

A frequentist approach is to test model 1 for departures in the direction of model 2 and compute a
p-value. Then switch the roles of the two models. There results information about whether both models
give an adequate fit in the respect tested, whether one but not the other fits or whether neither model is
adequate. In the last case, further analysis to develop an improved model would normally be required.
Note that such a possibility cannot be directly obtained from the formal Bayesian approach.

With three or more models the best procedure is usually to test model 1, say, in turn against model
2 and then model 3 and to take the smaller p-value adjusted for selection as an assessment of model 1,
and so on.

4 Systematics

Most statistical analysis focuses on random errors, it being assumed that the impact of systematic errors
has been eliminated by design, that is by arranging that the effects of interest are estimated by com-
parisons of groups of data equally affected by systematic errors. There is also a substantial literature
on estimating sources of variability in complex measurement systems intended, in particular, to aid the
standardization of measurement techniques.
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In the present context these methods are largely not applicable and explicit consideration of sys-
tematic errors seems unavoidable. A common approach seems to be to estimate the effect of an estimated
physical constant on the final result of interest by re-computing this final result with the physical constant
changed by plus and minus one standard error. Half the difference between these two resulting values
is then approximately the derivative of that quantity with respect to the physical constant. This could be
combined with other estimated sources of error in a propogation of errors formula, but it is essential to
note that the errors in estimating the constant must be independent of errors from other sources. A less
formal approach would be to investigate the sensitivity to the result of interest to errors in the physical
constant by re-computing the results over a range of plausible values for the constant.

If there are k sources of systematic error and these can be given bounds, taken without loss of
generality as say (−∆j,∆j) for j = 1, . . . , k, a very cautious approach is to do 2k possible analyses
based on the set of extreme possibilities, each with its confidence limits for the effect of interest and to
take the union of these intervals as the basis of inference. Assumptions that the ∆j are random variables
may be reasonable but the key issue will often concern the independence assumptions involved which
may have very strong implications. Ref. [3] has given a careful account of these issues from a Bayesian
perspective.

Systematic errors that are essentially nuisance parameters in a model that is fully specified, or
even partially specified, can be eliminated from the full likelihood by either maximizing over them or
by integrating over them, with respect to a weight function. The integration approach is emphasized in
[4]. . The maximization approach results in a profile likelihood, discussed in [5], and is implemented
as MINOS in MINUIT. The limiting distribution of statistics based on the profile likelihood is the same
as that for a simple likelihood. However the approximations given by this limiting theory, such as the
χ2 approximation to twice the log-(profile) likelihood ratio, can be quite inaccurate, especially if there
are large numbers of nuisance parameters. Several adjustments to profile likelihood have been suggested
in the statistical literature (see for example [1], Chs. 2 and 3), to take account of the uncertainty in
estimating the nuisance parameters. These adjustments are implicit in the weight function applied in
the integration approach, although the weight function is best thought of as a prior distribution on the
nuisance parameters. The choice of the prior is important, and a large body of evidence now indicates
that flat priors on the nuisance parameters are not appropriate, and can lead to very poorly calibrated
inference, especially if there are large numbers of nuisance parameters. In some applications it may be
possible to construct an empirical prior distribution from previous observations or from simulations.

5 Comparison of alternative test statistics

Tests are conventionally assessed by the power curve. In the simplest case of testing a null hypothesis H0

that a single parameter θ is equal to θ0 against alternatives θ > θ0, the power curve shows the probability
that the test “rejects” H0 at level α as a function of θ. Equivalently the power curve shows the probability
of a p-value less than α versus θ. If correctly calibrated the curve should pass through (θ0, α). It is often
a good idea to plot Φ−1(power) against θ, where Φ(x) =

∫ x
∞{1/

√
(2π)} exp(−y2/2)dy is the standard

Gaussian distribution function. This produces a series of roughly parallel curves, or even approximately
lines, for different α. In comparing two tests the steeper the curves the better.

More mathematically for test statistics that are approximately normally distributed we may define
the efficacy of a test T as

{ ∂E(T ; θ)
∂θ

∣∣∣∣
θ=θ0

}2/var(T ; θ0).

This measures the sensitivity of the expectation of T near the null hypothesis relative to the variance.
For two test statistics T1, T2 of the same null hypothesis the ratio of their efficacies is the asymp-

totic relative efficiency (ARE) of T1 relative to T2. Because efficacy usually scales as sample size, the
ARE compares the sample sizes needed to achieve the same power with the two tests. Thus for testing
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the mean of a Gaussian distribution the ARE of the median relative to the mean is 2/π so that tests based
on the median of n observations and on the mean of 0.63n observations have about the same power.

These ideas may be useful even if the properties of the tests are studied primarily by simulation.

6 p-values and limits

The CLs or CLs+b methods combine size and power in a very ad hoc way and are unlikely to have
satisfactory statistical properties. As is emphasized in Neal [4], upper and lower one-sided confidence
limits should replace confidence intervals, and a full plot of the log-likelihood function is better still.
A related point is that the construction of a p-value for discoveries, i.e. for confirming the existence
of a particular effect, should be treated as a separate problem from the establishment of limits on the
magnitude of a well-established effect. When there are several parameters of interest, a decision is needed
about whether they can be assessed separately, treating the other parameters as nuisance parameters for
each of these assessments, or whether it is physically more relevant to consider two (or more) of the
parameters as forming a single vector. In the latter case approximate p-values can be computed using
the usual asymptotic theory of likelihood, or a more refined version, but the construction of confidence
regions is considerably more difficult and often not very illuminating.
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