17 research outputs found

    Plane wave imaging challenge

    Get PDF
    The plane wave imaging challenge (PICMUS) has been introduced for the first time to IUS in order to encourage participants to compete and share their knowledge in medical ultrasound plane wave imaging. To participate in this challenge, we have chosen the contrast enhanced delay and sum (CEDAS) post signal processing method. This technique have been used to improve B-mode image contrast to noise ratio (CNR) without effecting the image spatial resolution. With CEDAS the energy of every envelope signal is calculated, mapped, and clustered in order to identify the cyst and clutter location. CEDAS significantly reduces the clutter inside the cyst by attenuating it from envelope signals before the new B-Mode image is formed. This paper describes in more details the techniques and parameters we have been using for the challenge. Results obtained for CEDAS shows that it outperforms conventional DAS by 18.33% in experiment and 79.24% in simulation for CNR

    Clutter noise reduction in B-Mode image through mapping and clustering signal energy for better cyst classification

    Get PDF
    Improving the ultrasound image contrast ratio (CR) and contrast to noise ratio (CNR) has many clinical advantages. Breast cancer detection is one example. Anechoic cysts which fill with clutter noise can be easily misinterpreted and classified as malignant lesions instead of benign. Beamforming techniques contribute to off-axis side lobes and clutter. These two side effects inherent in beamforming are undesirable since they will degrade the image quality by lowering the image CR and CNR. To overcome this issue a new post-processing technique known as contrast enhanced delay and sum (CEDAS) is proposed. Here the energy of every envelope signals are calculated, mapped, and clustered in order to identify the cyst and clutter location. CEDAS reduce clutter inside the cyst by attenuating it from envelope signals before the new B-Mode image is formed. With CEDAS, the image CR and CNR improved by average 12 dB and 1.1 dB respectively for cysts size 2 mm to 6 mm and imaging depth from 40 mm to 80 mm

    Velocity estimation error reduction in stenosis areas using a correlation correction method

    Get PDF
    The advent of ultrafast ultrasound imaging proved beneficial for capturing transient flow patterns which was never readily achievable before. Velocity estimation methods based on 2D block-matching outperform Doppler based methods by offering higher frame rate with the cost of increased uncertainty in presence of out-of-plane motion as a result of turbulent flow. Local median filtering can partially address the estimation error reduction in stenosis areas at the risk of higher inaccuracy, since neighboring values may be also outliers. In this study, a correlation correction method is proposed, where the out-of-plane motion is eliminated by means of multiplying correlation maps from a same area but in two adjacent pairs of RF images. Experimental investigations were performed on a wall-less flow phantom, and proposed method achieved an error reduction of 66% in turbulent flow regions

    Acoustic microbubble trapping in blood mimicking fluid

    Get PDF
    Microbubble (MB) volumetric pulsations can be selectively seeded with external ultrasonic fields. The therapeutic use of this phenomenon encompass mechanical thrombolysis and targeted drug deliveries through sonoporating endothelial cells. However, expected outcomes are still plagued by low bubble concentrations and short circulation time after administration. MBs preferentially flow along the centerline of large vessels which deteriorates biological targeting methodology in the case of vascular disease treatment with MBs. Simultaneous MB imaging and trapping against high flow rates has been recently proposed by instantaneously switching optimized ultrasonic beams. Principles were previously validated by circulating MBs with purified water through a flow phantom. But differences between blood and water call for preliminary investigations with blood mimicking fluid (BMF). This study demonstrated the capability of trapping bubbles in BMF with the acoustic trap but with nearly 40% efficiency reduction over the control in water, being present by the suppressed increase of image brightness

    Elevation resolution enhancement in 3D photoacoustic imaging using FDMAS beamforming

    Get PDF
    Photoacoustic imaging is a non-invasive and non-ionizing imaging technique that combines the spectral selectivity of laser excitation with the high resolution of ultrasound imaging. It is possible to identity the vascular structure of the cancerous tissue using this imaging modality. However, elevation and lateral resolution of photoacoustic imaging is usually poor for imaging target. In this study, three dimension filter delay multiply and sum beamforming technique (FDMAS(3D)) is used to improve the resolution and enhance the signal to noise ratio (SNR) of the 3D photoacoustic image that is created by using linear array transducer. This beamforming technique showed improvement in the elevation by 36% when its compared with three dimension delay and sum beamforming technique (DAS(3D)). In addition, it enhanced the SNR by 13 dB compared with DAS (3D)

    Spatial Resolution and Contrast Enhancement in Photoacoustic Imaging with Filter Delay Multiply and Sum Beamforming Technique

    Get PDF
    Photoacoustic imaging is used to differentiate between tissue types based on light absorption. Different structures, such as vascular density of capillaries in human tissue, can be analysed and provide diagnostic information to detect early stage breast cancer. Delay and sum (DAS) beamforming is the traditional method to reconstruct photoacoustic images. However, for structures located deep in the tissue (>10 mm), signal to noise (SNR) of the photoacoustic signal drops significantly. This study proposes using filter delay multiply and sum (FDMAS) beamforming technique to increase the SNR and enhance the image quality. Experimental results showed that FDMAS beamformer improved the SNR by 6.9 dB and the lateral resolution by 48% compared to the DAS beamformer. Moreover, the effect of aperture size on the proposed method is presented as the sub-group FDMAS, which further increased the improvement in image quality

    New Denoising Unsharp Masking Method for Improved Intima Media Thickness Measurements with Active Contour Segmentation

    Get PDF
    © 2018 IEEE. The semi-automated balloon snake active contour (BSAC) based segmentations play a vital role in determining the intima-media thickness (IMT) for accessing the risk related to cardio vascular diseases (CVD). However, the speckle and clutter noise in the ultrasound B-mode images are known to interfere with the contour formation during segmentation. Both noise sources act as false external energy in BSAC and thus influence the resulting boundary definition. A large number of iterations are required for the BSAC to accurately detect the boundary and in the presence of high noise the segmentation algorithm can result in false detections. Thus in this work we have applied the new denoising unsharp masking (UM) method on human common carotid artery in order to reduce clutter noise in the B-mode image before the segmentation process takes place for faster and accurate IMT measurement. The resuts show the number of iterations needed for BSAC to settle on the final intima-media border is less with UM-DAS (100 iterations) compared to that without the denoising technique, DAS (200 iterations). Thus the proposed UM techniques is able to provide better results with less time in measuring the IMT compared to that using DAS

    Simultaneous trapping and imaging of microbubbles at clinically relevant flow rates

    Get PDF
    Mechanisms for non-invasive target drug delivery using microbubbles and ultrasound have attracted growing interest. Microbubbles can be loaded with a therapeutic payload and tracked via ultrasound imaging to selectively release their payload at ultrasound-targeted locations. In this study, an ultrasonic trapping method is proposed for simultaneously imaging and controlling the location of microbubbles in flow by using acoustic radiation force. Targeted drug delivery methods are expected to benefit from the use of the ultrasonic trap, since trapping will increase the MB concentration at a desired location in human body. The ultrasonic trap was generated by using an ultrasound research system UARP II and a linear array transducer. The trap was designed asymmetrically to produces a weaker radiation force at the inlet of the trap to further facilitate microbubble entrance. A pulse sequence was generated that can switch between a long duration trapping waveform and short duration imaging waveform. High frame rate plane wave imaging was chosen for monitoring trapped microbubbles at 1 kHz. The working principle of the ultrasonic trap was explained and demonstrated in an ultrasound phantom by injecting SonoVue microbubbles flowing at 80 mL/min flow rate in a 3.5 mm diameter vessel

    Improved shear wave-front reconstruction method by aligning imaging beam angles with shear-wave polarization: Applied for shear compounding application

    Get PDF
    In shear compounding, shear waves are generated at various angles and individual elasticity maps are averaged to reduce noise and improve accuracy. The steered shear waves tilt the tissue motion direction therefore conventional plane wave tracking is not capable of capturing true shear wave amplitude and direction. The proposed method aligns the tracking beams with the shear wave angles, enables beam-axis in the direction of tissue motion to estimate true shear wave motion vector. In this experimental work, shear waves are produced at five different angles and motion is captured using proposed and conventional method. All the experiments are conducted using inclusion-based elasticity phantom. In the results, the displacement maps show that proposed method accurately captured the steered push-beam wave-fronts while conventional method produced push-beam direction artefacts. In the final compounded elasticity maps, the proposed method slightly improved background-to-inclusion elasticity ratio, CNR by 2 dB, and produced inclusion boundary shape sharper than the conventional tracking. © 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    Generation of Ultrasound Pulses in Water Using Granular Chains with a Finite Matching Layer

    Get PDF
    Wave propagation in granular chains is subject to dispersive effects as well as nonlinear effects arising from the Hertzian contact law. This enables the formation of wideband pulses, which is a desirable feature in the context of diagnostic and therapeutic ultrasound applications. However, coupling of the ultrasonic energy from a chain of spheres into biological tissue is a big challenge. In order to improve the energy transfer efficiency into biological materials, a matching layer is required. A prototype device is designed to address this by using six aluminum spheres and a vitreous carbon matching layer. The matching layer and the precompression force are selected specifically to maximize the acoustic pressure in water and its bandwidth. The designed device generates a train of wideband ultrasonic pulses from a narrow-band input with a center frequency of 73 kHz. An analytical model is created to simulate the behavior of a matching layer as a flexible thin plate clamped from the edges. This m odel is then verified using free-field hydrophone measurements in water, which successfully predict the increased bandwidth by generation of harmonics. The shapes of the measured and predicted waveforms are compared by calculating the normalized cross-correlation, which shows 83% similarity between both. Since the generation of harmonics is of interest in this study, the total harmonic distortion (THD) and the -6-dB bandwidth of the signals are used to analyze signal fidelity between the hydrophone measurements and the model predictions. The acoustic signals in water have a root-mean-square THD of 73%, and the model predicts a root-mean-square THD of 78%. The -6-dB bandwidths of individual pulses measured by a hydrophone and predicted with the model are 280 and 252 kHz, respectively. At these high ultrasonic frequencies, it is an experimental demonstration of resonant chains operating in water with a matching layer
    corecore