
Improved Shear Wave-front Reconstruction Method

by Aligning Imaging Beam Angles with Shear-wave

Polarization: Applied for Shear Compounding

Application

Safeer Hyder, Sevan Harput, Zainab Alomari, David M. J. Cowell, James McLaughlan and Steven Freear
Ultrasound Group, School of Electronic and Electrical Engineering, University of Leeds, UK.

Email: el10shl@leeds.ac.uk

Abstract—In shear compounding, shear waves are generated
at various angles and individual elasticity maps are averaged
to reduce noise and improve accuracy. The steered shear waves
tilt the tissue motion direction therefore conventional plane wave
tracking is not capable of capturing true shear wave amplitude
and direction. The proposed method aligns the tracking beams
with the shear wave angles, enables beam-axis in the direction of
tissue motion to estimate true shear wave motion vector. In this
experimental work, shear waves are produced at five different
angles and motion is captured using proposed and conventional
method. All the experiments are conducted using inclusion-based
elasticity phantom. In the results, the displacement maps show
that proposed method accurately captured the steered push-
beam wave-fronts while conventional method produced push-
beam direction artefacts. In the final compounded elasticity maps,
the proposed method slightly improved background-to-inclusion
elasticity ratio, CNR by 2 dB, and produced inclusion boundary
shape sharper than the conventional tracking.

I. INTRODUCTION

Elastic properties of the soft tissues have been used as

biomarker for diagnosis and staging various diseases such

as liver fibrosis staging [1], [2], breast lesion [3], and thy-

roid nodule differential diagnosis [4]. The ultrasound shear

wave elastography is able to produce 2-D elasticity maps

of soft tissues within few milli-seconds, which is based on

generation and calculation of shear wave propagation speed

in the medium. Assuming the tissue is linear, incompressible,

isotropic, and purely elastic, shear wave speed (cs) is related

with Young’s modulus (µ) using following expression, where

ρ is the mass density of the medium [5]

µ = ρc2
s

(1)

Two commercially available shear wave elastography tech-

niques are supersonic shear-wave imaging (SSI) [5] and comb-

push ultrasound shear-wave elastography (CUSE) [6]. To

enhance the stiffness estimation accuracy, the spatial shear

compounding technique was proposed for both SSI and CUSE

[5], [7]. In B-mode imaging, spatial compounding techniques

are widely used to improve B-mode image quality and speckle

tracking [8], [9]. In the shear compounding, similar phe-

nomenon is used and shear wave fields are produced from

various directions and individual elasticity maps are averaged

to minimize random noise and to improve inclusion geom-

etry reconstruction [5], [7]. In SSI, shear compounding was

achieved using supersonic phenomenon, and tilted shear waves

were induced at different angles using different Mach numbers

[5]. While, Song et al. exploited various sub-apertures of the

curvilinear array to produce differently angled shear waves [7].

When zero angle shear waves are generated, waves propagate

laterally while corresponding motion vector is orthogonal to

the propagation direction (axial direction), and eventually

aligned with the imaging beam-axis. The challenge arises

when steered shear waves are generated and it changes the

direction of motion vector as well, creating both axial and lat-

eral components of the motion. To estimate the angled motion

vector, there were various methods proposed in the research

for both blood-flow and elastography applications. The strain

elastography also share the similar challenge [10], and to

overcome this limitation, U. Techavipoo, et al. presented a

method to measure both axial and lateral tissue motion by

curve fitting angular displacements from multi-angle insoni-

fications [6]. Another method proposed by the Tanter, et al.

used two differently angled insonifications from separate sub-

apertures of the array, and estimated 2-D displacement tissue

motion [9].

In this study, we propose a method in which tracking beam

(insonification) angles are adjusted to push-beam angles (shear

wave beam) so that tissue motion is aligned with acoustic

beam axis. The method is applied for five different push-

beam angles. In conventional shear elastography, three angles

are used to improve speckle tracking accuracy SNR [8] and

the central angle is always zero while other two are selected

by adding and subtracting 2 or 4 from the central angle

[9]. Using proposed technique, three compounding angles for

displacement estimation are used while central angle is parallel

to the push-beam angle and other two angles are calculated

by adding and subtracting 2 from the push-beam angle, as

shown in Fig. 1. For this paper, aligned tracking terminology

is used for the proposed method while conventional tracking

for fixed shear wave tracking beams. The proposed method

was used to image a commercially available elasticity phantom

and the results were compared with the conventional tracking
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method in terms of background-to-inclusion ratio (BIR), and

CNR (contrast-noise-ratio).

II. MATERIALS AND METHODS

Ultrasound array research platform II (UARPII), developed

by Ultrasound Group, University of Leeds was used for

the RF data acquisition [11], [12]. The 128 element L3-

8/40EP (Prosonic Co., Ltd, Korea) medical probe with centre

frequency of 4.79 MHz was used for shear wave generation

and tracking. Five push-beam angles were tested for both

aligned and conventional tracking schemes and are listed as

(-15◦, -10◦, 0◦, +10◦, +15◦). For shear wave generation, three

focused (focal depth 30 mm) push-beams, 16 elements each

were used, with tone burst of 570 µs. After shear wave

generation, for aligned tracking scheme, the corresponding

imaging compounding angles used were (-17◦, -15◦, -13◦),

(-12◦, -10◦, -8◦) , (-2◦, 0◦ +2◦) , (+12◦, +10◦, +8◦) , and

(+17◦, +15◦, +13◦), for (-15◦, -10◦, 0◦ , +10◦ , +15◦) push-

beam angles, respectively. In conventional tracking scheme,

compounding angles were fixed to (-2◦, 0◦, +2◦) for all the

push-beam angles.

Conventional Tracking Aligned Tracking 

Push-beams

Tracking Beams

Tissue 

Phantom

Transducer

Fig. 1. The schematic diagram of the aligned and conventional
shear wave tracking. In aligned tracking beams, three imaging beams
are placed around push-beam angle while in conventional tracking
imaging beams are placed around zero degree.

The RF data was beamformed using classical delay-and-sum

beamformer [8], [14]. After shear wave generation, motion

data was acquired at frame-rate of 10 kHz, with effective

frame-rate of 3.33 kHz after averaging three multiple-angle

B-mode images. For shear wave motion estimation, 1-D nor-

malized cross-correlation was performed, with kernel length

of 2 mm (∼ 6λ) and step of 0.304 mm (∼ λ). To separate

complex shear wave field into left and right travelling shear

waves, directional filtering was performed [6]. For shear wave

speed estimation, a 2-D shear wave speed estimation algorithm

was applied with kernel size of 2.4 mm and patch size of 1.2

mm in the lateral and axial direction, as proposed by the [7].

The duration of shear wave generation and data acquisition

was 15 ms. For final elasticity maps, no smoothing filter was

used.

For elasticity imaging purpose, a multi-purpose, multi-tissue

ultrasound phantom (CIRS., Norfolk, VA) was used, with

Imaging Region

Fig. 2. The schematic diagram of the CIRS phantom and imaging
region. The imaging region consist of 40 mm in the axial and 50
mm in the lateral direction.

acoustic speed of 1540 m/s, attenuation of 0.5 dB/cm/MHz

and density of 1050 kg/m3. The 6 mm cylindrical inclusion is

centred at 15 mm from surface of the transducer. The Young’s

modulus of the inclusion is 10±3 kPa, and background has a

Young’s modulus of 22±5 kPa, while stiffness of the back-

ground is 2.2 times greater than the inclusion. The acoustic

and mechanical parameters of the phantom are tested and

provided by the manufacturer. For performance comparison,

the background-to-inclusion ratio and contrast-to-noise ratio in

dB were calculated for Young’s modulus values, and a 5 x 5

mm rectangular region-of-interest (ROI) inside the inclusion,

and two ROI surrounding the inclusion were used for these

calculations. The following expression was used for CNR,

where CI and CB are mean Young’s modulus values in the

inclusion and background, respectively; while σB is standard

deviation of the Young’s modulus of the background [6]

CNR = 20 log
10

[

|CI − CB |

σB

]

(2)

III. RESULTS AND DISCUSSION

This study shows a difference in the shear wave motion

tracking accuracy, when tracking beams are aligned with

the push-beam angles, in contrast to conventional tracking

schemes. When tracking beams are on the same axis as tissue

motion, true angle of the shear wave-front is reconstructed and

displacement SNR is improved, and final compounded elas-

ticity maps improved the inclusion boundary reconstruction,

CNR and elasticity ratio between inclusion and background.

The shear wave displacement maps for all experiments are

produced at 0.1 ms after shear wave generation is ceased, and

presented in the Fig. 3. In the conventional tracking maps

(Figs. 3a, 3b, 3c, 3d), it can be observed that conventional

tracking angles produced artefacts (pointed by the arrows)

which falsely reconstructs the direction of the push-beam angle

as zero-angle push-beam, while true push-beam angles are (-

15◦, -10◦, +10◦, +15◦). When tracking beams were switched

to aligned tracking (Figs. 3f, 3g, 3h, 3i), the artefacts are fully

suppressed and true push-beam direction is estimated, while

there is no overlapping between two push-beams.
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Fig. 3. The displacement maps for aligned and conventional tracking beams used for listed (-15◦, -10◦, 0◦, +10◦, +15◦) push-beam angles
at time instant of 0.1 ms after ultrasound switches to imaging mode. The labels on each displacement map indicate the push-beam and
associated tracking angle. All conventional tracking beams are fixed to (-2◦, 0◦, +2◦), while aligned tracking beams are adjusted to the
push-beam angle. The colorbar scale is in the units of µm. The false push-beam angle direction artefact are produced by the conventional
tracked maps pointed by arrows (map a and d) while in aligned tracked maps, the push-beam wave-front angle are truly reconstructed (map f
and i).

A
x
ia

l 
(m

m
)

−20 0 20

10

20

30

40
−20 0 20

10

20

30

40
−20 0 20

10

20

30

40

A
x
ia

l 
(m

m
)

−20 0 20

10

20

30

40
−20 0 20

10

20

30

40
−20 0 20

10

20

30

40

A
x
ia

l 
(m

m
)

−20 0 20

10

20

30

40
−20 0 20

10

20

30

40

Lateral (mm)

A
x
ia

l 
(m

m
)

−20 0 20

10

20

30

40

Lateral (mm)

−20 0 20

10

20

30

40

−20 0 20

10

20

30

40

Lateral (mm)

−20 0 20

10

20

30

40

Y
o

u
n

g
s
 m

o
d

u
lu

s
 (

k
P

a
)

5

10

15

20

25

30

35

40

45

50

a) Neg15 - Conv b) Neg10 - Conv c) Zero 

d) Pos10 - Conv e) Pos15 - Conv f) Compound - Conv

g) Neg15 - Aligned h) Neg10 - Aligned i) Zero 

j) Pos10 - Aligned k) Pos15 - Aligned l) Compound - Aligned

Fig. 4. The Elasticity maps for five push-beam angles and corresponding compounded maps for aligned and conventional tracking methods.
The colorbar scale is in units of Young’s modulus (kPa).The compounded aligned tracking map (map l) shows improved inclusion geometry,
better contrast and higher field-of-view as compared to the conventional tracked compounded map (map f).



TABLE I
YOUNG’S MODULUS BIR AND CNR MEASUREMENTS OF BACKGROUND

AND INCLUSION FROM ROI

Conventional Aligned

Push-beam Angle BIR CNR (dB) BIR CNR (dB)

- 15° 1.66 25.87 1.81 22.98
- 10° 1.54 25.18 1.62 25.15

0° 1.50 22.97 1.50 22.97
+ 10° 1.44 23.77 1.40 24.92
+ 15° 1.69 28.54 1.63 23.50
Compounded 1.56 29.05 1.59 31.00

In the zero shear wave angle, there are no artefacts as shear

wave and tracking angles are aligned (Fig. 3e). The Young’s

modulus maps are produced for all the experiments and pre-

sented in the Fig. 4. In elasticity measurements, -15◦ and -10◦

aligned tracked shear wave maps (Figs. 4g, 4h) have produced

sharper inclusion geometry contrast to conventional tracked

maps (Figs. 4a, 4b), while in +15◦ and +10◦ maps (Figs.

4d, 4e, 4j, 4k), no difference was observed and results are

comparable. A zero push-angle maps are same for both aligned

and conventional tracking (Fig. 4c). In the final compounded

elasticity maps, aligned tracking (Fig. 4l) have preserved inclu-

sion geometry shape better than the conventional tracking (Fig.

4f). In the final compounded maps, the CNR is 2 dB higher

for proposed method than the conventional method, and BIR

is also slightly improved in the aligned tracked maps (Table I).

Performance metrics indicate that, improvement in the shear

wave motion tracking is slightly translated to improve the

contrast and elasticity estimation accuracy. The improvement

could be further achieved if higher shear wave angles were

used but using linear arrays, higher steering angles result in

widened beamwidth, reduced sensitivity, and grating lobes

artefacts, therefore higher steering angles may not improve the

results [15]. Furthermore, using proposed technique, elasticity

values are achieved in the wider field-of-view (FOV) that

is 45 mm as compared to the conventional tracking that is

39 mm. The widened FOV provides elasticity information

over the larger area, and it is an additional advantage of the

proposed scheme. Ideally, shear compounding requires waves

from all directions, but clinically it is not possible. The shear

compounding angles can be further increased if mechanical

sources are used for shear wave generation as used by Zhao

et al. [16].

IV. CONCLUSIONS

In this experimental work, the effect of spatially aligning

tracking beams with shear wave polarization is investigated

and compared with the conventional method. The results

conclude that, angled displacement values are estimated with

correct push-beam wave-front while conventional tracking pro-

duced artefacts. In the final elasticity maps, aligned tracking

improved inclusion contrast and geometry. The results suggest

that, spatially aligning shear wave tracking and generation

beams improve the motion tracking.
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