28 research outputs found
7,8-Dihydro-8-oxoadenine, a highly mutagenic adduct, is repaired by Escherichia coli and human mismatch-specific uracil/thymine-DNA glycosylases
Hydroxyl radicals predominantly react with the C(8) of purines forming 7,8-dihydro-8-oxoguanine (8oxoG) and 7,8-dihydro-8-oxoadenine (8oxoA) adducts, which are highly mutagenic in mammalian cells. The majority of oxidized DNA bases are removed by DNA glycosylases in the base excision repair pathway. Here, we report for the first time that human thymine-DNA glycosylase (hTDG) and Escherichia coli mismatch-specific uracil-DNA glycosylase (MUG) can remove 8oxoA from 8oxoA*T, 8oxoA*G and 8oxoA*C pairs. Comparison of the kinetic parameters of the reaction indicates that full-length hTDG excises 8oxoA, 3,N(4)-ethenocytosine (epsilonC) and T with similar efficiency (k(max) = 0.35, 0.36 and 0.16 min(-1), respectively) and is more proficient as compared with its bacterial homologue MUG. The N-terminal domain of the hTDG protein is essential for 8oxoA-DNA glycosylase activity, but not for epsilonC repair. Interestingly, the TDG status had little or no effect on the proliferation rate of mouse embryonic fibroblasts after exposure to gamma-irradiation. Nevertheless, using whole cell-free extracts from the DNA glycosylase-deficient murine embryonic fibroblasts and E. coli, we demonstrate that the excision of 8oxoA from 8oxoA*T and 8oxoA*G has an absolute requirement for TDG and MUG, respectively. The data establish that MUG and TDG can counteract the genotoxic effects of 8oxoA residues in vivo
Hypoxia Promotes Tumor Growth in Linking Angiogenesis to Immune Escape
Despite the impressive progress over the past decade, in the field of tumor immunology, such as the identification of tumor antigens and antigenic peptides, there are still many obstacles in eliciting an effective immune response to eradicate cancer. It has become increasingly clear that tumor microenvironment plays a crucial role in the control of immune protection. Tumors have evolved to utilize hypoxic stress to their own advantage by activating key biochemical and cellular pathways that are important in progression, survival, and metastasis. Hypoxia-inducible factor (HIF-1) and vascular endothelial growth factor (VEGF) play a determinant role in promoting tumor cell growth and survival. Hypoxia contributes to immune suppression by activating HIF-1 and VEGF pathways. Accumulating evidence suggests a link between hypoxia and tumor tolerance to immune surveillance through the recruitment of regulatory cells (regulatory T cells and myeloid derived suppressor cells). In this regard, hypoxia (HIF-1α and VEGF) is emerging as an attractive target for cancer therapy. How the microenvironmental hypoxia poses both obstacles and opportunities for new therapeutic immune interventions will be discussed
Aberrant repair initiated by mismatch-specific thymine-DNA glycosylases provides a mechanism for the mutational bias observed in CpG islands
The human thymine-DNA glycosylase (TDG) initiates
the base excision repair (BER) pathway to remove
spontaneous and induced DNA base damage. It was
first biochemically characterized for its ability to remove
T mispaired with G in CpG context. TDG is
involved in the epigenetic regulation of gene expressions
by protecting CpG-rich promoters from de
novo DNA methylation. Here we demonstrate that
TDG initiates aberrant repair by excising T when it
is paired with a damaged adenine residue in DNA
duplex. TDG targets the non-damaged DNA strand
and efficiently excises T opposite of hypoxanthine
(Hx), 1,N6-ethenoadenine, 7,8-dihydro-8-oxoadenine
and abasic site in TpG/CpX context, where X is
a modified residue. In vitro reconstitution of BER
with duplex DNA containing Hx•T pair and TDG results
in incorporation of cytosine across Hx. Furthermore,
analysis of the mutation spectra inferred from
single nucleotide polymorphisms in human population
revealed a highly biased mutation pattern within
CpG islands (CGIs), with enhanced mutation rate at
CpA and TpG sites. These findings demonstrate that
under experimental conditions used TDG catalyzes
sequence context-dependent aberrant removal of
thymine, which results in TpG, CpA→CpGmutations,
thus providing a plausible mechanism for the putative
evolutionary origin of the CGIs in mammalian
genomes
Expérience de l'infliximab dans la rectocolite hémorragique et la colite indéterminée (étude et rétrospective multicentrique)
PARIS6-Bibl. St Antoine CHU (751122104) / SudocPARIS-BIUM (751062103) / SudocSudocFranceF
Etude de la voie de signalisation Sonic hedgehog dans les cancers cutanés de patients atteints de Xeroderma pigmentosum
PARIS7-Bibliothèque centrale (751132105) / SudocSudocFranceF
NEIL3-mediated proteasomal degradation facilitates the repair of cisplatin-induced DNA damage in human cells
Abstract Anti-neoplastic effect of DNA cross-linking agents such as cisplatin, mitomycin C, and psoralen is attributed to their ability to induce DNA interstrand cross-links (ICLs), which block replication, transcription, and linear repair pathways by preventing DNA strand separation and trigger apoptosis. It is generally agreed that the Fanconi anemia (FA) pathway orchestrates the removal of ICLs by the combined actions of various DNA repair pathways. Recently, attention has been focused on the ability of the NEIL3-initiated base excision repair pathway to resolve psoralen- and abasic site-induced ICLs in an FA-independent manner. Intriguingly, overexpression of NEIL3 is associated with chemo-resistance and poor prognosis in many solid tumors. Here, using loss- and gain-of-function approaches, we demonstrate that NEIL3 confers resistance to cisplatin and participates in the removal of cisplatin–DNA adducts. Proteomic studies reveal that the NEIL3 protein interacts with the 26S proteasome in a cisplatin-dependent manner. NEIL3 mediates proteasomal degradation of WRNIP1, a protein involved in the early step of ICL repair. We propose that NEIL3 participates in the repair of ICL-stalled replication fork by recruitment of the proteasome to ensure a timely transition from lesion recognition to repair via the degradation of early-step vanguard proteins
6-Azido d-galactose transfer to N-acetyl-d-glucosamine derivative using commercially available β-1,4-galactosyltransferase
International audienceA new strategy to tag glycoproteins carrying terminal GlcNAc was developed using commercially available bovine β-1,4-galactosyltransferase (GalT) and UDP-6-azidogalactose. The azide function was then allowed to react via a biotinylated Staudinger–Bertozzi probe demonstrating the usefulness of such a procedure to tag any glycoprotein possessing a N-acetylglucosamine terminal residue from any type of cell lysate
Renal Cell Carcinoma Programmed Death-ligand 1, a New Direct Target of Hypoxia-inducible Factor-2 Alpha, is Regulated by von Hippel-Lindau Gene Mutation Status
International audienceBACKGROUND: Clear cell renal cell carcinomas (ccRCC) frequently display a loss of function of the von Hippel-Lindau (VHL) gene. OBJECTIVE: To elucidate the putative relationship between VHL mutation status and immune checkpoint ligand programmed death-ligand 1 (PD-L1) expression. DESIGN, SETTING, AND PARTICIPANTS: A series of 32 renal tumors composed of 11 VHL tumor-associated and 21 sporadic RCCs were used to evaluate PD-L1 expression levels after sequencing of the three exons and exon-intron junctions of the VHL gene. The 786-O, A498, and RCC4 cell lines were used to investigate the mechanisms of PD-L1 regulation. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Fisher's exact test was used for VHL mutation and Kruskal-Wallis test for PD-L1 expression. If no covariate accounted for the association of VHL and PD-L1, then a Kruskal-Wallis test was used; otherwise Cochran-Mantel-Haenzsel test was used. We also used the Fligner-Policello test to compare two medians when the distributions had different dispersions. RESULTS AND LIMITATIONS: We demonstrated that tumors from ccRCC patients with VHL biallelic inactivation (ie, loss of function) display a significant increase in PD-L1 expression compared with ccRCC tumors carrying one VHL wild-type allele. Using the inducible VHL 786-O-derived cell lines with varying hypoxia-inducible factor-2 alpha (HIF-2α) stabilization levels, we showed that PD-L1 expression levels positively correlate with VHL mutation and HIF-2α expression. Targeting HIF-2α decreased PD-L1, while HIF-2α overexpression increased PD-L1 mRNA and protein levels in ccRCC cells. Interestingly, chromatin immunoprecipitation and luciferase assays revealed a direct binding of HIF-2α to a transcriptionally active hypoxia-response element in the human PD-L1 proximal promoter in 786-O cells. CONCLUSIONS: Our work provides the first evidence that VHL mutations positively correlate with PD-L1 expression in ccRCC and may influence the response to ccRCC anti-PD-L1/PD-1 immunotherapy. PATIENT SUMMARY: We investigated the relationship between von Hippel-Lindau mutations and programmed death-ligand 1 expression. We demonstrated that von Hippel-Lindau mutation status significantly correlated with programmed death-ligand 1 expression in clear cell renal cell carcinoma