20 research outputs found

    Hétérostructure graphène / silicium : de la formation de l'interface aux propriétés de transport électronique

    No full text
    The graphene / silicon interface is of interest to diverse fields such as photovoltaics, electronics and spin electronics to name a few. This thesis work, based on the combination of photoemission measurements, transport and DFT calculations, allows a better understanding of the electronic properties of this interface as well as of the mechanisms associated with the formation of the Schottky barrier. We show a de-anchoring of the closure level at the graphene/silicon or metal/graphene/silicon interface. This implies that the height of the Schottky barrier can be controlled by modifying the work of exiting the graphene. DFT calculations reveal that this non-anchoring of the closure level at the graphene/silicon interface describes a low density of states induced in the bandgap of silicon by graphene. We show that this phenomenon is mainly associated with the structure of the graphene band whose electrons close to the closing level are at the edge of the Brillouin zone, leading to a low evanescence length of electronic functions compared to classical metals. The removal of the anchoring of the closure level at the metal / silicon interface by addition to the interface of a graphene sheet has enabled us to obtain interesting metal/graphene/silicon structures for spin electronics.L’interface graphène/silicium présente un intérêt pour des domaines diverses et variés tels que le photovoltaïque, l’électronique et l’électronique de spin pour ne citer qu’eux. Ce travail de thèse, basé sur la combinaison de mesures de photoémission, de transports et de calculs DFT permet une meilleure compréhension des propriétés électroniques de cette interface ainsi que des mécanismes associés à la formation de la barrière Schottky. Nous mettons en évidence un désancrage du niveau de Fermi à l’interface graphène/silicium ou métal/graphène/silicium. Cela implique que la hauteur de la barrière Schottky peut être contrôlée par modification du travail de sortie du graphène. Les calculs DFT révèlent que ce non-ancrage du niveau de Fermi à l’interface graphène/silicium résulte d’une faible densité d’états induit dans la bande interdite du silicium par le graphène. Nous montrons que ce phénomène est principalement associé à la structure de bande du graphène dont les électrons proches du niveau de Fermi sont en bord de zone de Brillouin conduisant à une longueur d’évanescence des fonctions d’ondes électroniques faible comparée aux métaux classiques. La levée de l’ancrage du niveau de Fermi à l’interface métal/silicium par addition à l’interface d’un feuillet de graphène nous a permis d’obtenir des structures métal/graphène/silicium intéressantes pour l’électronique de spin

    Graphene / silicon heterostructure : from interface formation to electronic transport properties

    No full text
    L’interface graphène/silicium présente un intérêt pour des domaines diverses et variés tels que le photovoltaïque, l’électronique et l’électronique de spin pour ne citer qu’eux. Ce travail de thèse, basé sur la combinaison de mesures de photoémission, de transports et de calculs DFT permet une meilleure compréhension des propriétés électroniques de cette interface ainsi que des mécanismes associés à la formation de la barrière Schottky. Nous mettons en évidence un désancrage du niveau de Fermi à l’interface graphène/silicium ou métal/graphène/silicium. Cela implique que la hauteur de la barrière Schottky peut être contrôlée par modification du travail de sortie du graphène. Les calculs DFT révèlent que ce non-ancrage du niveau de Fermi à l’interface graphène/silicium résulte d’une faible densité d’états induit dans la bande interdite du silicium par le graphène. Nous montrons que ce phénomène est principalement associé à la structure de bande du graphène dont les électrons proches du niveau de Fermi sont en bord de zone de Brillouin conduisant à une longueur d’évanescence des fonctions d’ondes électroniques faible comparée aux métaux classiques. La levée de l’ancrage du niveau de Fermi à l’interface métal/silicium par addition à l’interface d’un feuillet de graphène nous a permis d’obtenir des structures métal/graphène/silicium intéressantes pour l’électronique de spin.The graphene / silicon interface is of interest to diverse fields such as photovoltaics, electronics and spin electronics to name a few. This thesis work, based on the combination of photoemission measurements, transport and DFT calculations, allows a better understanding of the electronic properties of this interface as well as of the mechanisms associated with the formation of the Schottky barrier. We show a de-anchoring of the closure level at the graphene/silicon or metal/graphene/silicon interface. This implies that the height of the Schottky barrier can be controlled by modifying the work of exiting the graphene. DFT calculations reveal that this non-anchoring of the closure level at the graphene/silicon interface describes a low density of states induced in the bandgap of silicon by graphene. We show that this phenomenon is mainly associated with the structure of the graphene band whose electrons close to the closing level are at the edge of the Brillouin zone, leading to a low evanescence length of electronic functions compared to classical metals. The removal of the anchoring of the closure level at the metal / silicon interface by addition to the interface of a graphene sheet has enabled us to obtain interesting metal/graphene/silicon structures for spin electronics

    Ingénierie d'interface du silicium par des matériaux 2D [Soutenance 14.12.2020]

    No full text
    supervisor Philippe Schieffer department of materials - nanosciences)sous la direction de Philippe Schieffer dans le département Matériaux-Nanoscience

    Sujet de thèse en cours : Ingénierie d'interface du silicium par des matériaux 2D

    No full text
    supervisor Philippe Schieffer department of materials - nanosciences)sous la direction de Philippe Schieffer dans le département Matériaux-Nanoscience

    Numerical evidence of heterogeneity and nanophases in a binary liquid confined at the nanoscale

    No full text
    International audienc

    Origin of weak Fermi level pinning at the graphene/silicon interface

    No full text
    International audienceThe mechanisms governing the formation of Schottky barriers at graphene/hydrogen-passivated silicon interfaces where the graphene plays the role of a two-dimensional (2D) metal electrode have been investigated by means of x-ray photoemission spectroscopy and density functional theory (DFT) calculations. To control the graphene work function without altering either the structure or the band dispersion of graphene we used a method that consists in depositing small amounts of gold forming clusters on the graphene/hydrogen-passivated silicon system under an ultra-high-vacuum environment. We observe from experimental measurements that the Fermi level is mainly free from pinning at the graphene/hydrogen-silicon interface whereas for a semi-infinite metal on silicon the Fermi level is almost fully pinned. This alleviation of the Fermi level pinning observed with the graphene layer is explained by DFT calculations showing that the graphene and the semiconductor are decoupled and that the metal-induced gap states (MIGS) density at the silicon midgap at the interface is very low (<5×1010states/(eVcm2)]. The important conclusion that stems from the DFT results analysis is that the low MIGS density at the semiconductor midgap is related to the 2D nature of the graphene layer. More precisely, the MIGS density is low owing to the lack of propagating states perpendicular to the graphene layer. This finding brings important information to understand the mechanisms that govern the formation and the electronic properties of Schottky barriers at 2D-metal/three-dimensional-semiconductor interfaces
    corecore