35 research outputs found

    High-resolution imaging of the Pyrenees and Massif Central from the data of the PYROPE and IBERARRAY portable array deployments

    Get PDF
    International audienceThe lithospheric structures beneath the Pyrenees, which holds the key to settle long-standing controversies regarding the opening of the Bay of Biscay and the formation of the Pyrenees, are still poorly known. The temporary PYROPE and IBERARRAY experiments have recently filled a strong deficit of seismological stations in this part of western Europe, offering a new and unique opportunity to image crustal and mantle structures with unprecedented resolution. Here we report the results of the first tomographic study of the Pyrenees relying on this rich data set. The important aspects of our tomographic study are the precision of both absolute and relative traveltime measurements obtained by a nonlinear simulated annealing waveform fit and the detailed crustal model that has been constructed to compute accurate crustal corrections. Beneath the Massif Central, the most prominent feature is a widespread slow anomaly that reflects a strong thermal anomaly resulting from the thinning of the lithosphere and upwelling of the asthenosphere. Our tomographic images clearly exclude scenarios involving subduction of oceanic lithosphere beneath the Pyrenees. In contrast, they reveal the segmentation of lithospheric structures, mainly by two major lithospheric faults, the Toulouse fault in the central Pyrenees and the Pamplona fault in the western Pyrenees. These inherited Hercynian faults were reactivated during the Cretaceous rifting of the Aquitaine and Iberian margins and during the Cenozoic Alpine convergence. Therefore, the Pyrenees can be seen as resulting from the tectonic inversion of a segmented continental rift that was buried by subduction beneath the European plate

    Arrival angles of teleseismic fundamental mode Rayleigh waves across the AlpArray

    Get PDF
    The dense AlpArray network allows studying seismic wave propagation with high spatial resolution. Here we introduce an array approach to measure arrival angles of teleseismic Rayleigh waves. The approach combines the advantages of phase correlation as in the two-station method with array beamforming to obtain the phase-velocity vector. 20 earthquakes from the first two years of the AlpArray project are selected, and spatial patterns of arrival-angle deviations across the AlpArray are shown in maps, depending on period and earthquake location. The cause of these intriguing spatial patterns is discussed. A simple wave-propagation modelling example using an isolated anomaly and a Gaussian beam solution suggests that much of the complexity can be explained as a result of wave interference after passing a structural anomaly along the wave paths. This indicates that arrival-angle information constitutes useful additional information on the Earth structure, beyond what is currently used in inversions

    Ambient-noise tomography of the wider Vienna Basin region

    Get PDF
    We present a new 3-D shear-velocity model for the top 30 km of the crust in the wider Vienna Basin region based on surface waves extracted from ambient-noise cross-correlations. We use continuous seismic records of 63 broad-band stations of the AlpArray project to retrieve interstation Green’s functions from ambient-noise cross-correlations in the period range from 5 to 25 s. From these Green’s functions, we measure Rayleigh group traveltimes, utilizing all four components of the cross-correlation tensor, which are associated with Rayleigh waves (ZZ, RR, RZ and ZR), to exploit multiple measurements per station pair. A set of selection criteria is applied to ensure that we use high-quality recordings of fundamental Rayleigh modes. We regionalize the interstation group velocities in a 5 km × 5 km grid with an average path density of ∌20 paths per cell. From the resulting group-velocity maps, we extract local 1-D dispersion curves for each cell and invert all cells independently to retrieve the crustal shear-velocity structure of the study area. The resulting model provides a previously unachieved lateral resolution of seismic velocities in the region of ∌15 km. As major features, we image the Vienna Basin and Little Hungarian Plain as low-velocity anomalies, and the Bohemian Massif with high velocities. The edges of these features are marked with prominent velocity contrasts correlated with faults, such as the Alpine Front and Vienna Basin transfer fault system. The observed structures correlate well with surface geology, gravitational anomalies and the few known crystalline basement depths from boreholes. For depths larger than those reached by boreholes, the new model allows new insight into the complex structure of the Vienna Basin and surrounding areas, including deep low-velocity zones, which we image with previously unachieved detail. This model may be used in the future to interpret the deeper structures and tectonic evolution of the wider Vienna Basin region, evaluate natural resources, model wave propagation and improve earthquake locations, among others

    Shear-wave velocity structure beneath the Dinarides from the inversion of Rayleigh-wave dispersion

    Get PDF
    Highlights ‱ Rayleigh-wave phase velocity in the wider Dinarides region using the two-station method. ‱ Uppermost mantle shear-wave velocity model of the Dinarides-Adriatic Sea region. ‱ Velocity model reveals a robust high-velocity anomaly present under the whole Dinarides. ‱ High-velocity anomaly reaches depth of 160 km in the northern Dinarides to more than 200 km under southern Dinarides. ‱ New structural model incorporating delamination as one of the processes controlling the continental collision in the Dinarides. The interaction between the Adriatic microplate (Adria) and Eurasia is the main driving factor in the central Mediterranean tectonics. Their interplay has shaped the geodynamics of the whole region and formed several mountain belts including Alps, Dinarides and Apennines. Among these, Dinarides are the least investigated and little is known about the underlying geodynamic processes. There are numerous open questions about the current state of interaction between Adria and Eurasia under the Dinaric domain. One of the most interesting is the nature of lithospheric underthrusting of Adriatic plate, e.g. length of the slab or varying slab disposition along the orogen. Previous investigations have found a low-velocity zone in the uppermost mantle under the northern-central Dinarides which was interpreted as a slab gap. Conversely, several newer studies have indicated the presence of the continuous slab under the Dinarides with no trace of the low velocity zone. Thus, to investigate the Dinaric mantle structure further, we use regional-to-teleseismic surface-wave records from 98 seismic stations in the wider Dinarides region to create a 3D shear-wave velocity model. More precisely, a two-station method is used to extract Rayleigh-wave phase velocity while tomography and 1D inversion of the phase velocity are employed to map the depth dependent shear-wave velocity. Resulting velocity model reveals a robust high-velocity anomaly present under the whole Dinarides, reaching the depths of 160 km in the north to more than 200 km under southern Dinarides. These results do not agree with most of the previous investigations and show continuous underthrusting of the Adriatic lithosphere under Europe along the whole Dinaric region. The geometry of the down-going slab varies from the deeper slab in the north and south to the shallower underthrusting in the center. On-top of both north and south slabs there is a low-velocity wedge indicating lithospheric delamination which could explain the 200 km deep high-velocity body existing under the southern Dinarides

    Crustal Thinning From Orogen to Back-Arc Basin: The Structure of the Pannonian Basin Region Revealed by P-to-S Converted Seismic Waves

    Get PDF
    We present the results of P-to-S receiver function analysis to improve the 3D image of the sedimentary layer, the upper crust, and lower crust in the Pannonian Basin area. The Pannonian Basin hosts deep sedimentary depocentres superimposed on a complex basement structure and it is surrounded by mountain belts. We processed waveforms from 221 three-component broadband seismological stations. As a result of the dense station coverage, we were able to achieve so far unprecedented spatial resolution in determining the velocity structure of the crust. We applied a three-fold quality control process; the first two being applied to the observed waveforms and the third to the calculated radial receiver functions. This work is the first comprehensive receiver function study of the entire region. To prepare the inversions, we performed station-wise H-Vp/Vs grid search, as well as Common Conversion Point migration. Our main focus was then the S-wave velocity structure of the area, which we determined by the Neighborhood Algorithm inversion method at each station, where data were sub-divided into back-azimuthal bundles based on similar Ps delay times. The 1D, nonlinear inversions provided the depth of the discontinuities, shear-wave velocities and Vp/Vs ratios of each layer per bundle, and we calculated uncertainty values for each of these parameters. We then developed a 3D interpolation method based on natural neighbor interpolation to obtain the 3D crustal structure from the local inversion results. We present the sedimentary thickness map, the first Conrad depth map and an improved, detailed Moho map, as well as the first upper and lower crustal thickness maps obtained from receiver function analysis. The velocity jump across the Conrad discontinuity is estimated at less than 0.2 km/s over most of the investigated area. We also compare the new Moho map from our approach to simple grid search results and prior knowledge from other techniques. Our Moho depth map presents local variations in the investigated area: the crust-mantle boundary is at 20–26 km beneath the sedimentary basins, while it is situated deeper below the Apuseni Mountains, Transdanubian and North Hungarian Ranges (28–33 km), and it is the deepest beneath the Eastern Alps and the Southern Carpathians (40–45 km). These values reflect well the Neogene evolution of the region, such as crustal thinning of the Pannonian Basin and orogenic thickening in the neighboring mountain belts

    Sismob

    No full text
    International audienceSismob est le parc national d'instruments sismologiques mobiles terrestres. Il est donc l'antenne sismologique mobile de RĂ©sif. Comme pour les autres parcs du mĂȘme type, par exemple Seis-UK en Grande-Bretagne ou Passcal aux Etats-Unis, l'objectif de Sismob est de permettre la collecte de donnĂ©es sismologiques sur des objectifs ciblĂ©s en l'absence d'observatoires permanents, ou, en complĂ©ment de ces observatoires, en permettant une densification significative de l'Ă©chantillonnage spatial. Par essence, les expĂ©riences utilisant le matĂ©riel Sismob sont temporaires et leur durĂ©e varie de quelques jours Ă  deux ans

    Sismob

    No full text
    International audienceSismob est le parc national d'instruments sismologiques mobiles terrestres. Il est donc l'antenne sismologique mobile de RĂ©sif. Comme pour les autres parcs du mĂȘme type, par exemple Seis-UK en Grande-Bretagne ou Passcal aux Etats-Unis, l'objectif de Sismob est de permettre la collecte de donnĂ©es sismologiques sur des objectifs ciblĂ©s en l'absence d'observatoires permanents, ou, en complĂ©ment de ces observatoires, en permettant une densification significative de l'Ă©chantillonnage spatial. Par essence, les expĂ©riences utilisant le matĂ©riel Sismob sont temporaires et leur durĂ©e varie de quelques jours Ă  deux ans

    Sismob

    No full text
    International audienceSismob est le parc national d'instruments sismologiques mobiles terrestres. Il est donc l'antenne sismologique mobile de RĂ©sif. Comme pour les autres parcs du mĂȘme type, par exemple Seis-UK en Grande-Bretagne ou Passcal aux Etats-Unis, l'objectif de Sismob est de permettre la collecte de donnĂ©es sismologiques sur des objectifs ciblĂ©s en l'absence d'observatoires permanents, ou, en complĂ©ment de ces observatoires, en permettant une densification significative de l'Ă©chantillonnage spatial. Par essence, les expĂ©riences utilisant le matĂ©riel Sismob sont temporaires et leur durĂ©e varie de quelques jours Ă  deux ans

    Sismob

    No full text
    International audienceSismob est le parc national d'instruments sismologiques mobiles terrestres. Il est donc l'antenne sismologique mobile de RĂ©sif. Comme pour les autres parcs du mĂȘme type, par exemple Seis-UK en Grande-Bretagne ou Passcal aux Etats-Unis, l'objectif de Sismob est de permettre la collecte de donnĂ©es sismologiques sur des objectifs ciblĂ©s en l'absence d'observatoires permanents, ou, en complĂ©ment de ces observatoires, en permettant une densification significative de l'Ă©chantillonnage spatial. Par essence, les expĂ©riences utilisant le matĂ©riel Sismob sont temporaires et leur durĂ©e varie de quelques jours Ă  deux ans

    MuChPoint: Multiple Change Point

    No full text
    Nonparametric approach to estimate the location of block boundaries (change-points) of non-overlapping blocks in a random symmetric matrix which consists of random variables whose distribution changes from block to block
    corecore