7 research outputs found

    Identification of neuroactive steroids and their precursors and metabolites in adult male rat brain

    Get PDF
    Steroids in the brain arise both from local synthesis and from peripheral sources and have a variety of effects on neuronal function. However, there is little direct chemical evidence for the range of steroids present in brain or of the pathways for their synthesis and inactivation. This information is a prerequisite for understanding the regulation and function of brain steroids. After extraction from adult male rat brain, we have fractionated free steroids and their sulfate esters and then converted them to heptafluorobutyrate or methyloxime-trimethylsilyl ether derivatives for unequivocal identification and assay by gas chromatography analysis and selected ion monitoring mass spectrometry. In the free steroid fraction, corticosterone, 3 alpha, 5 alpha-tetrahydrodeoxycorticosterone, testosterone, and dehydroepiandrosterone were found in the absence of detectable precursors usually found in endocrine glands, indicating peripheral sources and/or alternative synthetic pathways in brain. Conversely, the potent neuroactive steroid 3 alpha, 5 alpha-tetrahydroprogesterone ( allopregnanolone) was found in the presence of its precursors pregnenolone, progesterone, and 5 alpha-dihydroprogesterone. Furthermore, the presence of 3 alpha-, 11 alpha-, 17 alpha-, and 20 alpha-hydroxylated metabolites of 3 alpha, 5 alpha-tetrahydroprogesterone implicated possible inactivation pathways for this steroid. The 20 alpha-reduced metabolites could also be found for pregnenolone, progesterone, and 5 alpha-dihydroprogesterone, introducing a possible regulatory diversion from the production of 3 alpha, 5 alpha-tetrahydroprogesterone. In the steroid sulfate fraction, dehydroepiandrostrone sulfate was identified but not pregnenolone sulfate. Although pharmacologically active, identification of the latter appears to be an earlier methodological artifact, and the compound is thus of doubtful physiological significance in the adult brain. Our results provide a basis for elucidating the origins and regulation of brain steroids

    Uptake and metabolism of sulphated steroids by the blood-brain barrier in the adult male rat

    Get PDF
    Little is known about the origin of the neuroactive steroids dehydroepiandrosterone sulphate (DHEAS) and pregnenolone sulphate (PregS) in the brain or of their subsequent metabolism. Using rat brain perfusion in situ, we have found (3) H-PregS to enter more rapidly than (3) H-DHEAS and both to undergo extensive (>50%) desulphation within 0.5 min of uptake. Enzyme activity for the steroid sulphatase catalysing this deconjugation was enriched in the capillary fraction of the blood-brain barrier and its mRNA expressed in cultures of rat brain endothelial cells and astrocytes. Although permeability measurements suggested a net efflux, addition of the efflux inhibitors GF120918 and/or MK571 to the perfusate reduced rather than enhanced the uptake of (3) H-DHEAS and (3) H-PregS; a further reduction was seen upon the addition of unlabelled steroid sulphate, suggesting a saturable uptake transporter. Analysis of brain fractions after 0.5 min perfusion with the (3) H-steroid sulphates showed no further metabolism of PregS beyond the liberation of free steroid pregnenolone. By contrast, DHEAS underwent 17-hydroxylation to form androstenediol in both the steroid sulphate and the free steroid fractions, with some additional formation of androstenedione in the latter. Our results indicate a gain of free steroid from circulating steroid sulphates as hormone precursors at the blood-brain barrier, with implications for ageing, neurogenesis, neuronal survival, learning and memory. This article is protected by copyright. All rights reserved
    corecore