33 research outputs found

    Glueball production in radiative J/psi, Upsilon decays

    Get PDF
    Using a bound-state model of weakly bound gluons for glueballs made of two gluons and a natural generalization of the perturbative QCD formalism for exclusive hadronic processes, we present results for glueball production in radiative J/psi, Upsilon decays into several possible glueball states, including L \not= 0 ones. We perform a detailed phenomenological analysis, presenting results for the more favored experimental candidates and for decay angular distributions.Comment: RevTeX4, 26 pages, 11 eps figure

    The Two-Loop Pinch Technique in the Electroweak Sector

    Get PDF
    The generalization of the two-loop Pinch Technique to the Electroweak Sector of the Standard Model is presented. We restrict ourselves to the case of conserved external currents, and provide a detailed analysis of both the charged and neutral sectors. The crucial ingredient for this construction is the identification of the parts discarded during the pinching procedure with well-defined contributions to the Slavnov-Taylor identity satisfied by the off-shell one-loop gauge-boson vertices; the latter are nested inside the conventional two-loop self-energies. It is shown by resorting to a set of powerful identities that the two-loop effective Pinch Technique self-energies coincide with the corresponding ones computed in the Background Feynman gauge. The aforementioned identities are derived in the context of the Batalin-Vilkovisky formalism, a fact which enables the individual treatment of the self-energies of the photon and the ZZ-boson. Some possible phenomenological applications are briefly discussed.Comment: 50 pages, uses axodra

    Asymptotic properties of Born-improved amplitudes with gauge bosons in the final state

    Get PDF
    For processes with gauge bosons in the final state we show how to continuously connect with a single Born-improved amplitude the resonant region, where resummation effects are important, with the asymptotic region far away from the resonance, where the amplitude must reduce to its tree-level form. While doing so all known field-theoretical constraints are respected, most notably gauge-invariance, unitarity and the equivalence theorem. The calculations presented are based on the process ffˉZZf\bar{f}\to ZZ, mediated by a possibly resonant Higgs boson; this process captures all the essential features, and can serve as a prototype for a variety of similar calculations. By virtue of massive cancellations the resulting closed expressions for the differential and total cross-sections are particularly compact.Comment: 23 pages, Latex, 4 Figures, uses axodra

    Strong tree level unitarity violations in the extra dimensional Standard Model with scalars in the bulk

    Get PDF
    We show how the tree level unitarity violations of compactified extra dimensional extensions of the Standard Model become much stronger when the scalar sector is included in the bulk. This effect occurs when the couplings are not suppressed for larger Kaluza-Klein levels, and could have relevant consequences for the phenomenology of the next generation of colliders. We also introduce a simple and generic formalism to obtain unitarity bounds for finite energies, taking into account coupled channels including the towers of Kaluza-Klein excitations.Comment: Version to appear in Phys. Rev. D Typos corrected and remarks added to clarify figure

    A simple inert model solves the little hierarchy problem and provides a dark matter candidate

    Full text link
    We discuss a minimal extension to the standard model in which two singlet scalar states that only interacts with the Higgs boson is added. Their masses and interaction strengths are fixed by the two requirements of canceling the one-loop quadratic corrections to the Higgs boson mass and providing a viable dark matter candidate. Direct detection of the lightest of these new states in nuclear scattering experiments is possible with a cross section within reach of future experiments.Comment: Finite corrections included. Model modified. Conclusion unchange

    Scale of fermion mass generation

    Full text link
    Unitarity of longitudinal weak vector boson scattering implies an upper bound on the scale of electroweak symmetry breaking, ΛEWSB8πv\Lambda_{EWSB}\equiv \sqrt{8\pi}v\approx 1 TeV. Appelquist and Chanowitz have derived an analogous upper bound on the scale of fermion mass generation, proportional to v2/mfv^2/m_f, by considering the scattering of same-helicity fermions into pairs of longitudinal weak vector bosons in a theory without a standard Higgs boson. We show that there is no upper bound, beyond that on the scale of electroweak symmetry breaking, in such a theory. This result is obtained by considering the same process, but with a large number of longitudinal weak vector bosons in the final state. We further argue that there is no scale of (Dirac) fermion mass generation in the standard model. In contrast, there is an upper bound on the scale of Majorana-neutrino mass generation, given by ΛMaj4πv2/mν\Lambda_{Maj}\equiv 4\pi v^2/m_\nu. In general, the upper bound on the scale of fermion mass generation depends on the dimensionality of the interaction responsible for generating the fermion mass. We explore the scale of fermion mass generation in a variety of excursions from the standard model: models with fermions in nonstandard representations, a theory with higher-dimension interactions, a two-Higgs-doublet model, and models without a Higgs boson.Comment: 31 pages, 9 figures; version accepted for publication in Phys. Rev.

    Octet-Baryon Form Factors in the Diquark Model

    Full text link
    We present an alternative parameterization of the quark-diquark model of baryons which particularly takes care of the most recent proton electric form-factor data from the E136 experiment at SLAC. In addition to electromagnetic form factors of the nucleon, for which good agreement with data is achieved, we discuss the weak axial vector form factor of the nucleon as well as electromagnetic form factors of Λ\Lambda and Σ\Sigma hyperons. Technical advance in calculating the pertinent analytic expressions within perturbative quantum chromodynamics is gained by formulating the wave function of the quark-diquark system in a covariant way. Finally, we also comment on the influence of Sudakov corrections within the scope of the diquark model.Comment: 16 pages, WU-B 93-07, latex, uuencoded postscript files of 7 figures appended at the end of the latex fil

    Equivalence Theorem and Probing the Electroweak Symmetry Breaking Sector

    Full text link
    We examine the Lorentz non-invariance ambiguity in longitudinal weak-boson scatterings and the precise conditions for the validity of the Equivalence Theorem (ET). {\it Safe} Lorentz frames for applying the ET are defined, and the intrinsic connection between the longitudinal weak-boson scatterings and probing the symmetry breaking sector is analyzed. A universal precise formulation of the ET is presented for both the Standard Model and the Chiral Lagrangian formulated Electro-Weak Theories. It is shown that in electroweak theories with strongly interacting symmetry breaking sector, the longitudinal weak-boson scattering amplitude {\it under proper conditions} can be replaced by the corresponding Goldstone-boson scattering amplitude in which all the internal weak-boson lines and fermion loops are ignored.Comment: 20 pages, in LaTeX, to appear in Phys. Rev. D (1995). A few minor corrections were made to clarify our viewpoint of the Equivalence Theorem and compare our conclusion with those in the literatur
    corecore