168 research outputs found

    The role of the party platform in the American political system

    Get PDF

    Biology and Impacts of Pacific Island Invasive Species. 9. Capra hircus, the Feral Goat (Mammalia: Bovidae)

    Get PDF
    Domestic goats, Capra hircus, were intentionally introduced to numerous oceanic islands beginning in the sixteenth century. The remarkable ability of C. hircus to survive in a variety of conditions has enabled this animal to become feral and impact native ecosystems on islands throughout the world. Direct ecological impacts include consumption and trampling of native plants, leading to plant community modification and transformation of ecosystem structure. Although the negative impacts of feral goats are well known and effective management strategies have been developed to control this invasive species, large populations persist on many islands. This review summarizes impacts of feral goats on Pacific island ecosystems and management strategies available to control this invasive species

    Ethanol Pharmacokinetics in Neonates Secondary to Medication Administration

    Get PDF
    Purpose: Ethanol serves as a solvent and microbial preservative in oral liquid medications and is the second most commonly used solvent in liquid medications following water. Despite widespread use of ethanol in liquid medications for neonates, the pharmacokinetics and toxicity of ethanol in young children are not well described. The aim of the current study is to quantify blood ethanol levels in neonates secondary to oral ethanol containing medications. Methods: Neonates who received either oral phenobarbital (15% ethanol) and/or oral dexamethasone (30% ethanol) per standard of care were eligible for enrollment. A maximum of 6 blood samples per patient (4.5 mL total) were taken over the study period. Blood samples were collected via heel stick at the time of clinical laboratory collections or following a specific collection for study purposes. In addition, blood samples were collected from neonates receiving sublingual buprenorphine (30% ethanol) for neonatal abstinence syndrome from a separate clinical study. Blood ethanol levels were measured using a validated headspace gas chromatography-mass spectrometry method utilizing micro-volume ( ÌŽ100uL) plasma samples. The limit of detection and lower limit of quantification for the assay were 0.1 mg/L and 0.5 mg/L respectively. Results: A total of 39 plasma samples from 15 neonates who were on ethanol containing medications were collected over the study period. Four neonates were exposed to phenobarbital and/or dexamethasone, while eleven neonates were exposed to buprenorphine alone or in combination with phenobarbital. Patients were exposed to an average of 71.6 mg/kg (range 13.1 to 215 mg/kg) of ethanol after a single dose of an ethanol containing medication. Blood ethanol levels were detectable in 98% (38/39) of samples, quantifiable in 67% (26/39) of samples, and ranged from below detection to 85.4 mg/L. Ethanol was rapidly cleared and did not accumulate with current dosing regimens. Conclusion: Ethanol intake secondary to medication administration varied widely. Blood ethanol levels in neonates were low and ethanol was eliminated rapidly after a single dose of oral medications that contained a sizable fraction of ethanol.https://jdc.jefferson.edu/petposters/1000/thumbnail.jp

    Common polymorphism in H19 associated with birthweight and cord blood IGF-II levels in humans.

    Get PDF
    BACKGROUND: Common genetic variation at genes that are imprinted and exclusively maternally expressed could explain the apparent maternal-specific inheritance of low birthweight reported in large family pedigrees. We identified ten single nucleotide polymorphisms (SNPs) in H19, and we genotyped three of these SNPs in families from the contemporary ALSPAC UK birth cohort (1,696 children, 822 mothers and 661 fathers) in order to explore associations with size at birth and cord blood IGF-II levels. RESULTS: Both offspring's and mother's H19 2992C>T SNP genotypes showed associations with offspring birthweight (P = 0.03 to P = 0.003) and mother's genotype was also associated with cord blood IGF-II levels (P = 0.0003 to P = 0.0001). The offspring genotype association with birthweight was independent of mother's genotype (P = 0.01 to P = 0.007). However, mother's untransmitted H19 2992T allele was also associated with larger birthweight (P = 0.04) and higher cord blood IGF-II levels (P = 0.002), suggesting a direct effect of mother's genotype on placental IGF-II expression and fetal growth. The association between mother's untransmitted allele and cord blood IGF-II levels was more apparent in offspring of first pregnancies than subsequent pregnancies (P-interaction = 0.03). Study of the independent Cambridge birth cohort with available DNA in mothers (N = 646) provided additional support for mother's H19 2992 genotype associations with birthweight (P = 0.04) and with mother's glucose levels (P = 0.01) in first pregnancies. CONCLUSION: The common H19 2992T allele, in the mother or offspring or both, may confer reduced fetal growth restraint, as indicated by associations with larger offspring birth size, higher cord blood IGF-II levels, and lower compensatory early postnatal catch-up weight gain, that are more evident among mother's smaller first-born infants.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Hawai‘i Forest Review: Synthesizing the Ecology, Evolution, and Conservation of a Model System

    Get PDF
    As the most remote archipelago in the world, the Hawaiian Islands are home to a highly endemic and disharmonic biota that has fascinated biologists for centuries. Forests are the dominant terrestrial biome in Hawai‘i, spanning complex, heterogeneous climates across substrates that vary tremendously in age, soil structure, and nutrient availability. Species richness is low in Hawaiian forests compared to other tropical forests, as a consequence of dispersal limitation from continents and adaptive radiations in only some lineages, and forests are dominated by the widespread Metrosideros species complex. Low species richness provides a relatively tractable model system for studies of community assembly, local adaptation, and species interactions. Moreover, Hawaiian forests provide insights into predicted patterns of evolution on islands, revealing that while some evidence supports “island syndromes,” there are exceptions to them all. For example, Hawaiian plants are not as a whole less defended against herbivores, less dispersible, more conservative in resource use, or more slow-growing than their continental relatives. Clearly, more work is needed to understand the drivers, sources, and constraints on phenotypic variation among Hawaiian species, including both widespread and rare species, and to understand the role of this variation for ecological and evolutionary processes, which will further contribute to conservation of this unique biota. Today, Hawaiian forests are among the most threatened globally. Resource management failures – the proliferation of non-native species in particular – have led to devastating declines in native taxa and resulted in dominance by novel species assemblages. Conservation and restoration of Hawaiian forests now rely on managing threats including climate change, ongoing species introductions, novel pathogens, lost mutualists, and altered ecosystem dynamics through the use of diverse tools and strategies grounded in basic ecological, evolutionary, and biocultural principles. The future of Hawaiian forests thus depends on the synthesis of ecological and evolutionary research, which will continue to inform future conservation and restoration practices

    Mycorrhizal feedbacks influence global forest structure and diversity

    Get PDF
    One mechanism proposed to explain high species diversity in tropical systems is strong negative conspecific density dependence (CDD), which reduces recruitment of juveniles in proximity to conspecific adult plants. Although evidence shows that plant-specific soil pathogens can drive negative CDD, trees also form key mutualisms with mycorrhizal fungi, which may counteract these effects. Across 43 large-scale forest plots worldwide, we tested whether ectomycorrhizal tree species exhibit weaker negative CDD than arbuscular mycorrhizal tree species. We further tested for conmycorrhizal density dependence (CMDD) to test for benefit from shared mutualists. We found that the strength of CDD varies systematically with mycorrhizal type, with ectomycorrhizal tree species exhibiting higher sapling densities with increasing adult densities than arbuscular mycorrhizal tree species. Moreover, we found evidence of positive CMDD for tree species of both mycorrhizal types. Collectively, these findings indicate that mycorrhizal interactions likely play a foundational role in global forest diversity patterns and structure

    Home Range Use and Movement Patterns of Non-Native Feral Goats in a Tropical Island Montane Dry Landscape

    Get PDF
    Advances in wildlife telemetry and remote sensing technology facilitate studies of broad-scale movements of ungulates in relation to phenological shifts in vegetation. In tropical island dry landscapes, home range use and movements of non-native feral goats (Capra hircus) are largely unknown, yet this information is important to help guide the conservation and restoration of some of the world’s most critically endangered ecosystems. We hypothesized that feral goats would respond to resource pulses in vegetation by traveling to areas of recent green-up. To address this hypothesis, we fitted six male and seven female feral goats with Global Positioning System (GPS) collars equipped with an Argos satellite upload link to examine goat movements in relation to the plant phenology using the Normalized Difference Vegetation Index (NDVI). Movement patterns of 50% of males and 40% of females suggested conditional movement between non-overlapping home ranges throughout the year. A shift in NDVI values corresponded with movement between primary and secondary ranges of goats that exhibited long-distance movement, suggesting that vegetation phenology as captured by NDVI is a good indicator of the habitat and movement patterns of feral goats in tropical island dry landscapes. In the context of conservation and restoration of tropical island landscapes, the results of our study identify how non-native feral goats use resources across a broad landscape to sustain their populations and facilitate invasion of native plant communities
    • 

    corecore