191 research outputs found
Quantization of Nonstandard Hamiltonian Systems
The quantization of classical theories that admit more than one Hamiltonian
description is considered. This is done from a geometrical viewpoint, both at
the quantization level (geometric quantization) and at the level of the
dynamics of the quantum theory. A spin-1/2 system is taken as an example in
which all the steps can be completed. It is shown that the geometry of the
quantum theory imposes restrictions on the physically allowed nonstandard
quantum theories.Comment: Revtex file, 23 pages, no figure
Dynamics of test bodies with spin in de Sitter spacetime
We study the motion of spinning test bodies in the de Sitter spacetime of
constant positive curvature. With the help of the 10 Killing vectors, we derive
the 4-momentum and the tensor of spin explicitly in terms of the spacetime
coordinates. However, in order to find the actual trajectories, one needs to
impose the so-called supplementary condition. We discuss the dynamics of
spinning test bodies for the cases of the Frenkel and Tulczyjew conditions.Comment: 11 pages, RevTex forma
Twistors, special relativity, conformal symmetry and minimal coupling - a review
An approach to special relativistic dynamics using the language of spinors
and twistors is presented. Exploiting the natural conformally invariant
symplectic structure of the twistor space, a model is constructed which
describes a relativistic massive, spinning and charged particle, minimally
coupled to an external electro-magnetic field. On the two-twistor phase space
the relativistic Hamiltonian dynamics is generated by a Poincare scalar
function obtained from the classical limit (appropriately defined by us) of the
second order, to an external electro-magnetic field minimally coupled, Dirac
operator. In the so defined relativistic classical limit there are no Grassman
variables. Besides, the arising equation that describes dynamics of the
relativistic spin differs significantly from the so called Thomas Bergman
Michel Telegdi equation.Comment: 39 pages, no figures, few erronous statements (not affecting anything
else in the papper) on page 23 delete
Auditory perception in individuals with Friedreich’s Ataxia
INTRODUCTION:
Friedreich's ataxia (FRDA) is an inherited ataxia with a range of progressive features including axonal degeneration of sensory nerves. The aim of this study was to investigate auditory perception in affected individuals.
METHODS:
Fourteen subjects with genetically defined FRDA participated. Two control groups, one consisting of healthy, normally hearing individuals and another comprised of subjects with sensorineural hearing loss, were also assessed. Auditory processing was evaluated using structured tasks designed to reveal the listeners' ability to perceive temporal and spectral cues. Findings were then correlated with open-set speech understanding.
RESULTS:
Nine of 14 individuals with FRDA showed evidence of auditory processing disorder. Gap and amplitude modulation detection levels in these subjects were significantly elevated, indicating impaired encoding of rapid signal changes. Electrophysiologic findings (auditory brainstem response, ABR) also reflected disrupted neural activity. Speech understanding was significantly affected in these listeners and the degree of disruption was related to temporal processing ability. Speech analyses indicated that timing cues (notably consonant voice onset time and vowel duration) were most affected.
CONCLUSION:
The results suggest that auditory pathway abnormality is a relatively common consequence of FRDA. Regular auditory evaluation should therefore be part of the management regime for all affected individuals. This assessment should include both ABR testing, which can provide insights into the degree to which auditory neural activity is disrupted, and some functional measure of hearing capacity such as speech perception assessment, which can quantify the disorder and provide a basis for interventio
Spacetime dynamics of spinning particles - exact electromagnetic analogies
We compare the rigorous equations describing the motion of spinning test
particles in gravitational and electromagnetic fields, and show that if the
Mathisson-Pirani spin condition holds then exact gravito-electromagnetic
analogies emerge. These analogies provide a familiar formalism to treat
gravitational problems, as well as a means for comparing the two interactions.
Fundamental differences are manifest in the symmetries and time projections of
the electromagnetic and gravitational tidal tensors. The physical consequences
of the symmetries of the tidal tensors are explored comparing the following
analogous setups: magnetic dipoles in the field of non-spinning/spinning
charges, and gyroscopes in the Schwarzschild, Kerr, and Kerr-de Sitter
spacetimes. The implications of the time projections of the tidal tensors are
illustrated by the work done on the particle in various frames; in particular,
a reciprocity is found to exist: in a frame comoving with the particle, the
electromagnetic (but not the gravitational) field does work on it, causing a
variation of its proper mass; conversely, for "static observers," a stationary
gravitomagnetic (but not a magnetic) field does work on the particle, and the
associated potential energy is seen to embody the Hawking-Wald spin-spin
interaction energy. The issue of hidden momentum, and its counterintuitive
dynamical implications, is also analyzed. Finally, a number of issues regarding
the electromagnetic interaction and the physical meaning of Dixon's equations
are clarified.Comment: 32+11 pages, 5 figures. Edited and further improved version, with new
Section C.2 unveiling analogies for arbitrary spin conditions, and new Sec.
3.2.3 in the Supplement making connection to the post-Newtonian
approximation; former Sec. III.B.4 and Appendix C moved to the (reshuffled)
Supplement; references updated. The Supplement is provided in ancillary file.
Matches the final published versio
Mathisson's helical motions for a spinning particle --- are they unphysical?
It has been asserted in the literature that Mathisson's helical motions are
unphysical, with the argument that their radius can be arbitrarily large. We
revisit Mathisson's helical motions of a free spinning particle, and observe
that such statement is unfounded. Their radius is finite and confined to the
disk of centroids. We argue that the helical motions are perfectly valid and
physically equivalent descriptions of the motion of a spinning body, the
difference between them being the choice of the representative point of the
particle, thus a gauge choice. We discuss the kinematical explanation of these
motions, and we dynamically interpret them through the concept of hidden
momentum. We also show that, contrary to previous claims, the frequency of the
helical motions coincides, even in the relativistic limit, with the
zitterbewegung frequency of the Dirac equation for the electron
Generalized Euler Angle Paramterization for SU(N)
In a previous paper (math-ph/0202002) an Euler angle parameterization for
SU(4) was given. Here we present the derivation of a generalized Euler angle
parameterization for SU(N). The formula for the calculation of the Haar measure
for SU(N) as well as its relation to Marinov's volume formula for SU(N) will
also be derived. As an example of this parameterization's usefulness, the
density matrix parameterization and invariant volume element for a
qubit/qutrit, three qubit and two three-state systems, also known as two qutrit
systems, will also be given.Comment: 36 pages, no figures; added qubit/qutrit work, corrected minor
definition problems and clarified Haar measure derivation. To be published in
J. Phys. A: Math. and Ge
On spin-1 massive particles coupled to a Chern-Simons field
We study spin one particles interacting through a Chern-Simons field. In the
Born approximation, we calculate the two body scattering amplitude considering
three possible ways to introduce the interaction: (a) a Proca like model
minimally coupled to a Chern-Simons field, (b) the model obtained from (a) by
replacing the Proca's mass by a Chern-Simons term and (c) a complex
Maxwell-Chern-Simons model minimally coupled to a Chern-Simons field. In the
low energy regime the results show similarities with the Aharonov-Bohm
scattering for spin 1/2 particles. We discuss the one loop renormalization
program for the Proca's model. In spite of the bad ultraviolet behavior of the
matter field propagator, we show that, up to one loop the model is power
counting renormalizable thanks to the Ward identities satisfied by the
interaction vertices.Comment: 14 pages, 5 figures, revte
Rotation and Spin in Physics
We delineate the role of rotation and spin in physics, discussing in order
Newtonian classical physics, special relativity, quantum mechanics, quantum
electrodynamics and general relativity. In the latter case, we discuss the
generalization of the Kepler formula to post-Newtonian order )
including spin effects and two-body effects. Experiments which verify the
theoretical results for general relativistic spin-orbit effects are discussed
as well as efforts being made to verify the spin-spin effects
Chedoke Arm and Hand Activity Inventory-9 (CAHAI-9): Perceived clinical utility within 14 days of stroke
Purpose: The Chedoke Arm and Hand Activity Inventory-9 (CAHAI-9) is an activity-based assessment developed to include relevant functional tasks and to be sensitive to clinically important changes in upper limb function. The aim of this study was to explore both therapists' and clients' views on the clinical utility of CAHAI-9 within 14 days of stroke. Method: Twenty-one occupational therapists actively working in stroke settings were recruited by convenience sampling from 8 hospitals and participated in semistructured focus groups. Five clients within 14 days of stroke were recruited by consecutive sampling from 1 metropolitan hospital and participated in structured individual interviews. The transcripts were analyzed thematically. Results: Six themes emerged from the focus groups and interviews: collecting information, decisions regarding client suitability, administration and scoring, organizational demands, raising awareness, and clients' perceptions of CAHAI-9 utility. All therapists agreed CAHAI-9 was suited for the stroke population and assisted identification of client abilities or difficulties within functional contexts. Opinions varied as to whether CAHAI-9 should be routinely administered with clients who had mild and severe upper limb deficits, but therapists agreed it was appropriate for clients with moderate deficits. Therapists made suggestions regarding refinement of the scoring and training to increase utility. All clients with stroke felt that the assessment provided reassurance regarding their recovery. Conclusion: The findings indicate that CAHAI-9 shows promise as an upper limb ability assessment for clients within 14 days of stroke
- …