37 research outputs found
Gene autoregulation via intronic microRNAs and its functions
Background: MicroRNAs, post-transcriptional repressors of gene expression,
play a pivotal role in gene regulatory networks. They are involved in core
cellular processes and their dysregulation is associated to a broad range of
human diseases. This paper focus on a minimal microRNA-mediated regulatory
circuit, in which a protein-coding gene (host gene) is targeted by a microRNA
located inside one of its introns. Results: Autoregulation via intronic
microRNAs is widespread in the human regulatory network, as confirmed by our
bioinformatic analysis, and can perform several regulatory tasks despite its
simple topology. Our analysis, based on analytical calculations and
simulations, indicates that this circuitry alters the dynamics of the host gene
expression, can induce complex responses implementing adaptation and Weber's
law, and efficiently filters fluctuations propagating from the upstream network
to the host gene. A fine-tuning of the circuit parameters can optimize each of
these functions. Interestingly, they are all related to gene expression
homeostasis, in agreement with the increasing evidence suggesting a role of
microRNA regulation in conferring robustness to biological processes. In
addition to model analysis, we present a list of bioinformatically predicted
candidate circuits in human for future experimental tests. Conclusions: The
results presented here suggest a potentially relevant functional role for
negative self-regulation via intronic microRNAs, in particular as a homeostatic
control mechanism of gene expression. Moreover, the map of circuit functions in
terms of experimentally measurable parameters, resulting from our analysis, can
be a useful guideline for possible applications in synthetic biology.Comment: 29 pages and 7 figures in the main text, 18 pages of Supporting
Informatio
Identification of functional TFAP2A and SP1 binding sites in new TFAP2A-modulated genes
BACKGROUND: Different approaches have been developed to dissect the interplay between transcription factors (TFs) and their cis-acting sequences on DNA in order to identify TF target genes. Here we used a combination of computational and experimental approaches to identify novel direct targets of TFAP2A, a key TF for a variety of physiological and pathological cellular processes. Gene expression profiles of HeLa cells either silenced for TFAP2A by RNA interference or not were previously compared and a set of differentially expressed genes was revealed.
RESULTS: The regulatory regions of 494 TFAP2A-modulated genes were analyzed for the presence of TFAP2A binding sites, employing the canonical TFAP2A Positional Weight Matrix (PWM) reported in Jaspar http://jaspar.genereg.net/. 264 genes containing at least 2 high score TFAP2A binding sites were identified, showing a central role in "Cellular Movement" and "Cellular Development". In an attempt to identify TFs that could cooperate with TFAP2A, a statistically significant enrichment for SP1 binding sites was found for TFAP2A-activated but not repressed genes. The direct binding of TFAP2A or SP1 to a random subset of TFAP2A-modulated genes was demonstrated by Chromatin ImmunoPrecipitation (ChIP) assay and the TFAP2A-driven regulation of DCBLD2/ESDN/CLCP1 gene studied in details.
CONCLUSIONS: We proved that our computational approaches applied to microarray selected genes are valid tools to identify functional TF binding sites in gene regulatory regions as confirmed by experimental validations. In addition, we demonstrated a fine-tuned regulation of DCBLD2/ESDN transcription by TFAP2A
Genome-Wide Survey of MicroRNA - Transcription Factor Feed-Forward Regulatory Circuits in Human
In this work, we describe a computational framework for the genome-wide
identification and characterization of mixed
transcriptional/post-transcriptional regulatory circuits in humans. We
concentrated in particular on feed-forward loops (FFL), in which a master
transcription factor regulates a microRNA, and together with it, a set of joint
target protein coding genes. The circuits were assembled with a two step
procedure. We first constructed separately the transcriptional and
post-transcriptional components of the human regulatory network by looking for
conserved over-represented motifs in human and mouse promoters, and 3'-UTRs.
Then, we combined the two subnetworks looking for mixed feed-forward regulatory
interactions, finding a total of 638 putative (merged) FFLs. In order to
investigate their biological relevance, we filtered these circuits using three
selection criteria: (I) GeneOntology enrichment among the joint targets of the
FFL, (II) independent computational evidence for the regulatory interactions of
the FFL, extracted from external databases, and (III) relevance of the FFL in
cancer. Most of the selected FFLs seem to be involved in various aspects of
organism development and differentiation. We finally discuss a few of the most
interesting cases in detail.Comment: 51 pages, 5 figures, 4 tables. Supporting information included.
Accepted for publication in Molecular BioSystem
Molecular models for intrastrand DNA G-quadruplexes
<p>Abstract</p> <p>Background</p> <p>Independent surveys of human gene promoter regions have demonstrated an overrepresentation of G<sub>3</sub>X<sub><it>n</it>1</sub>G3X<sub><it>n</it>2</sub>G<sub>3</sub>X<sub><it>n</it>3</sub>G<sub>3 </sub>motifs which are known to be capable of forming intrastrand quadruple helix structures. In spite of the widely recognized importance of G-quadruplex structures in gene regulation and growing interest around this unusual DNA structure, there are at present only few such structures available in the Nucleic Acid Database. In the present work we generate by molecular modeling feasible G-quadruplex structures which may be useful for interpretation of experimental data.</p> <p>Results</p> <p>We have used all quadruplex DNA structures deposited in the Nucleic Acid Database in order to select a list of fragments entailing a strand of three adjacent G's paired with another strand of three adjacent G's separated by a loop of one to four residues. These fragments were further clustered and representative fragments were finally selected. Further fragments were generated by assemblying the two strands of each fragment with loops from different fragments whenever the anchor G's were superimposable. The fragments were used to assemble G quadruplex based on a superimposability criterion.</p> <p>Conclusion</p> <p>Molecular models have been generated for a large number of G<sub>3</sub>X<sub><it>n</it>1</sub>G<sub>3</sub>X<sub><it>n</it>2</sub>G3X<sub><it>n</it>3</sub>G<sub>3 </sub>sequences. For a given sequence not all topologies are possible with the available repertoire of fragments due to steric hindrance and low superimposability. Since all molecular models are generated by fragments coming from observed quadruplex structures, molecular models are in principle reliable and may be used for interpretation of experimental data. Some examples of applications are given.</p
TFEB controls integrin-mediated endothelial cell adhesion by the regulation of cholesterol metabolism
The dynamic integrin-mediated adhesion of endothelial cells (ECs) to the surrounding ECM is fundamental for angiogenesis both in physiological and pathological conditions, such as embryonic development and cancer progression. The dynamics of EC-to-ECM adhesions relies on the regulation of the conformational activation and trafficking of integrins. Here, we reveal that oncogenic transcription factor EB (TFEB), a known regulator of lysosomal biogenesis and metabolism, also controls a transcriptional program that influences the turnover of ECM adhesions in ECs by regulating cholesterol metabolism. We show that TFEB favors ECM adhesion turnover by promoting the transcription of genes that drive the synthesis of cholesterol, which promotes the aggregation of caveolin-1, and the caveolin-dependent endocytosis of integrin β1. These findings suggest that TFEB might represent a novel target for the pharmacological control of pathological angiogenesis and bring new insights in the mechanism sustaining TFEB control of endocytosis. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10456-022-09840-x
Role of Diacylglycerol Kinases in Acute Myeloid Leukemia
: Diacylglycerol kinases (DGKs) play dual roles in cell transformation and immunosurveillance. According to cancer expression databases, acute myeloid leukemia (AML) exhibits significant overexpression of multiple DGK isoforms, including DGKA, DGKD and DGKG, without a precise correlation with specific AML subtypes. In the TGCA database, high DGKA expression negatively correlates with survival, while high DGKG expression is associated with a more favorable prognosis. DGKA and DGKG also feature different patterns of co-expressed genes. Conversely, the BeatAML and TARGET databases show that high DGKH expression is correlated with shorter survival. To assess the suitability of DGKs as therapeutic targets, we treated HL-60 and HEL cells with DGK inhibitors and compared cell growth and survival with those of untransformed lymphocytes. We observed a specific sensitivity to R59022 and R59949, two poorly selective inhibitors, which promoted cytotoxicity and cell accumulation in the S phase in both cell lines. Conversely, the DGKA-specific inhibitors CU-3 and AMB639752 showed poor efficacy. These findings underscore the pivotal and isoform-specific involvement of DGKs in AML, offering a promising pathway for the identification of potential therapeutic targets. Notably, the DGKA and DGKH isoforms emerge as relevant players in AML pathogenesis, albeit DGKA inhibition alone seems insufficient to impair AML cell viability
Specific transcriptional programs differentiate ICOS from CD28 costimulatory signaling in human NaĂŻve CD4+ T cells
14 p.-5 fig. This work is dedicated to the memory of our colleague SZ. SZ was an extraordinary person, a great friend, a remarkable scholar and an unfailing mentor for our students. Her passion for life and research will always be an example. We miss her a lot.Costimulatory molecules of the CD28 family play a crucial role in the activation of immune responses in T lymphocytes, complementing and modulating signals originating from the T-cell receptor (TCR) complex. Although distinct functional roles have been demonstrated for each family member, the specific signaling pathways differentiating ICOS- from CD28-mediated costimulation during early T-cell activation are poorly characterized. In the present study, we have performed RNA-Seq-based global transcriptome profiling of anti-CD3-treated naïve CD4+ T cells upon costimulation through either inducible costimulator (ICOS) or CD28, revealing a set of signaling pathways specifically associated with each signal. In particular, we show that CD3/ICOS costimulation plays a major role in pathways related to STAT3 function and osteoarthritis (OA), whereas the CD3/CD28 axis mainly regulates p38 MAPK signaling. Furthermore, we report the activation of distinct immunometabolic pathways, with CD3/ICOS costimulation preferentially targeting glycosaminoglycans (GAGs) and CD3/CD28 regulating mitochondrial respiratory chain and cholesterol biosynthesis. These data suggest that ICOS and CD28 costimulatory signals play distinct roles during the activation of naïve T cells by modulating distinct sets of immunological and immunometabolic genes.This work was supported by Fondazione CARIPLO (2014-0812) to SZ. and by the Associazione Italiana Ricerca sul Cancro (IG 20714 to UD and IG 20240 to SO, AIRC, Milano), and Fondazione Cariplo (2017-0535) to UD. DC acknowledge support by the Italian Ministry of University and Research program “Departments of Excellence 2018-2022”, AGING Project – Department of Translational Medicine, Università del Piemonte Orientale. Fondazione Umberto Veronesi, Milan, Italy supported EB.Peer reviewe
Cholecalciferol (vitamin D3) has a direct protective activity against interleukin 6-induced atrophy in C2C12 myotubes
We previously determined that different vitamin D metabolites can have opposite effects on C2C12 myotubes, depending on the sites of hydroxylation or doses. Specifically, 25(OH)D3 (25VD) has an anti-atrophic activity, 1,25(OH)2D3 induces atrophy, and 24,25(OH)2D3 is anti-atrophic at low concentrations and atrophic at high concentrations. This study aimed to clarify whether cholecalciferol (VD3) too, the non-hydroxylated upstream metabolite, has a direct effect on muscle cells. Assessing the effects of VD3 treatment on mouse C2C12 skeletal muscle myotubes undergoing atrophy induced by interleukin 6 (IL6), we demonstrated that VD3 has a protective action, preserving C2C12 myotubes size, likely through promoting the differentiation and fusion of residual myoblasts and by modulating the IL6-induced autophagic flux. The lack, in C2C12 myotubes, of the hydroxylase transforming VD3 in the anti-atrophic 25VD metabolite suggests that VD3 may have a direct biological activity on the skeletal muscle. Furthermore, we found that the protective action of VD3 depended on VDR, implying that VD3 too might bind to and activate VDR. However, despite the formation of VDR-RXR heterodimers, VD3 effects do not depend on RXR activity. In conclusion, VD3, in addition to its best-known metabolites, may directly impact on skeletal muscle homeostasis
Correlated fragile site expression allows the identification of candidate fragile genes involved in immunity and associated with carcinogenesis
Common fragile sites (cfs) are specific regions in the human genome that are
particularly prone to genomic instability under conditions of replicative
stress. Several investigations support the view that common fragile sites play
a role in carcinogenesis. We discuss a genome-wide approach based on graph
theory and Gene Ontology vocabulary for the functional characterization of
common fragile sites and for the identification of genes that contribute to
tumour cell biology. CFS were assembled in a network based on a simple measure
of correlation among common fragile site patterns of expression. By applying
robust measurements to capture in quantitative terms the non triviality of the
network, we identified several topological features clearly indicating
departure from the Erdos-Renyi random graph model. The most important outcome
was the presence of an unexpected large connected component far below the
percolation threshold. Most of the best characterized common fragile sites
belonged to this connected component. By filtering this connected component
with Gene Ontology, statistically significant shared functional features were
detected. Common fragile sites were found to be enriched for genes associated
to the immune response and to mechanisms involved in tumour progression such as
extracellular space remodeling and angiogenesis. Our results support the
hypothesis that fragile sites serve a function; we propose that fragility is
linked to a coordinated regulation of fragile genes expression.Comment: 18 pages, accepted for publication in BMC Bioinformatic