5,630 research outputs found

    Lycopene treatment of prostate cancer cell lines inhibits adhesion and migration properties of the cells

    Get PDF
    licenses/by-nc-nd/3.0/). Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. Received: 2014.03.17; Accepted: 2014.05.23; Published: 2014.07.02 Background: Consumption of lycopene through tomato products has been suggested to reduce the risk of prostate cancer. Cellular adhesion and migration are important features of cancer progression and therefore a potential target for cancer interception. In the present study we have examined the in vitro effect of lycopene on these processes. Methods: Prostate cancer cell lines PC3, DU145 and immortalised normal prostate cell line PNT-2 were used. The adhesion assay consisted of seeding pre-treated cells onto Matrigel™, gently removing non-adherent cells and quantitating the adherent fraction using WST-1. Migratory potential was assessed using ibidi ™ migration chamber inserts, in which a cell-free zone between two confluent areas was allowed to populate over time and the migration measured. Results: 24 hour incubation of prostate cell lines with 1.15µmol/l lycopene showed a 40 % re-duction of cellular motility in case of PC3 cells, 58 % in DU145 cells and no effect was observed for PNT2 cells. A dose related inhibition of cell adhesion to a basement membrane in the form o

    Growth of Stygobitic (\u3cem\u3eOrconectes australis packardi\u3c/em\u3e) and Epigean (\u3cem\u3eOrconectes cristavarius\u3c/em\u3e) Crayfishes Maintained in Laboratory Conditions

    Get PDF
    This study reports on maintenance and growth of the cave crayfish, Orconectes australis packardi, and the epigean crayfish, Orconectes cristavarius, with laboratory conditions for 1 and 2 years. The O. a. packardi survived well compared to the O. cristavarius in captivity. The poor survival of the epigean species was probably due to unsuitable conditions. The epigean as well as the cave crayfish molted and grew in captivity, but without any significant difference in molt frequency between species. In the first year, total body length was obtained to assay growth, whereas in the second year the more accurate measure of post-orbital carapace length was used. The ability of O. a. packardi to adjust to captivity is likely due to their lower metabolic rate and ability to handle hypoxic stress better than epigean species

    Product longevity and shared ownership: Sustainable routes to satisfying the world’s growing demand for goods 

    Get PDF
    It has been estimated that by 2030 the number of people who are wealthy enough to be significant consumers will have tripled. This will have a dramatic impact on the demands for primary materials and energy. It has been estimated that with improvements in design and manufacturing it is possible to maintain the current level of production using 70% of the current primary material consumed. Even with these improvements on the production side, there will still be a doubling of primary material requirements by the end of the century, with accompanying rises in industrial energy demand, if the rise in demand for goods and services is to be met. It is therefore clear that the consumption of products must also be explored. Product longevity and using goods more intensively are two strategies which could reduce the demand for new goods. If products last longer, then manufacturing output can concentrate on emerging markets rather than the market for replacement goods. There are many goods which are infrequently used, these seldom wear out. The total demand for such could be drastically reduced if they we re shared with other people. Sharing of goods has traditionally been conducted between friends or by hiring equipment, but modern communication systems and social media could increase the opportunities to share goods. Sharing goods also increases access to a range of goods for those on low incomes. From a series of workshops it has been found that the principal challenges are sociological rather than technological. This paper contains a discussion of these challenges and explores possible futures where these two strategies have been adopted. In addition, the barriers and opportunities that these strategies offer for 548 AIMS Energy Volume 3, Issue 4, 547-561. consumers and businesses are identified, and areas where government policy could be instigated to bring about change are highlighted

    Understanding adsorption of hydrogen atoms on graphene

    Get PDF
    Adsorption of hydrogen atoms on a single graphite sheet (graphene) has been investigated by first-principles electronic structure means, employing plane-wave based, periodic density functional theory. A reasonably large 5x5 surface unit cell has been employed to study single and multiple adsorption of H atoms. Binding and barrier energies for sequential sticking have been computed for a number of configurations involving adsorption on top of carbon atoms. We find that binding energies per atom range from ~0.8 eV to ~1.9 eV, with barriers to sticking in the range 0.0-0.2 eV. In addition, depending on the number and location of adsorbed hydrogen atoms, we find that magnetic structures may form in which spin density localizes on a 3x3R30\sqrt{3}{x}\sqrt{3}{R}30^{\circ} sublattice, and that binding (barrier) energies for sequential adsorption increase (decrease) linearly with the site-integrated magnetization. These results can be rationalized with the help of the valence-bond resonance theory of planar π\pi conjugated systems, and suggest that preferential sticking due to barrierless adsorption is limited to formation of hydrogen pairs.Comment: 12 pages, 8 figures and 4 table

    Predictors of disease progression in HIV infection: a review

    Get PDF
    During the extended clinically latent period associated with Human Immunodeficiency Virus (HIV) infection the virus itself is far from latent. This phase of infection generally comes to an end with the development of symptomatic illness. Understanding the factors affecting disease progression can aid treatment commencement and therapeutic monitoring decisions. An example of this is the clear utility of CD4+ T-cell count and HIV-RNA for disease stage and progression assessment

    A novel mode of capping protein-regulation by Twinfilin

    Get PDF
    Cellular actin assembly is controlled at the barbed ends of actin filaments, where capping protein (CP) limits polymerization. Twinfilin is a conserved in vivo binding partner of CP, yet the significance of this interaction has remained a mystery. Here, we discover that the C-terminal tail of Twinfilin harbors a CP-interacting (CPI) motif, identifying it as a novel CPI-motif protein. Twinfilin and the CPI-motif protein CARMIL have overlapping binding sites on CP. Further, Twinfilin binds competitively with CARMIL to CP, protecting CP from barbed-end displacement by CARMIL. Twinfilin also accelerates dissociation of the CP inhibitor V-1, restoring CP to an active capping state. Knockdowns of Twinfilin and CP each cause similar defects in cell morphology, and elevated Twinfilin expression rescues defects caused by CARMIL hyperactivity. Together, these observations define Twinfilin as the first \u27pro-capping\u27 ligand of CP and lead us to propose important revisions to our understanding of the CP regulatory cycle

    A quantum Bose-Hubbard model with evolving graph as toy model for emergent spacetime

    Full text link
    We present a toy model for interacting matter and geometry that explores quantum dynamics in a spin system as a precursor to a quantum theory of gravity. The model has no a priori geometric properties, instead, locality is inferred from the more fundamental notion of interaction between the matter degrees of freedom. The interaction terms are themselves quantum degrees of freedom so that the structure of interactions and hence the resulting local and causal structures are dynamical. The system is a Hubbard model where the graph of the interactions is a set of quantum evolving variables. We show entanglement between spatial and matter degrees of freedom. We study numerically the quantum system and analyze its entanglement dynamics. We analyze the asymptotic behavior of the classical model. Finally, we discuss analogues of trapped surfaces and gravitational attraction in this simple model.Comment: 23 pages, 6 figures; updated to published versio
    corecore