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Abstract Cellular actin assembly is controlled at the barbed ends of actin filaments, where

capping protein (CP) limits polymerization. Twinfilin is a conserved in vivo binding partner of CP,

yet the significance of this interaction has remained a mystery. Here, we discover that the

C-terminal tail of Twinfilin harbors a CP-interacting (CPI) motif, identifying it as a novel CPI-motif

protein. Twinfilin and the CPI-motif protein CARMIL have overlapping binding sites on CP. Further,

Twinfilin binds competitively with CARMIL to CP, protecting CP from barbed-end displacement by

CARMIL. Twinfilin also accelerates dissociation of the CP inhibitor V-1, restoring CP to an active

capping state. Knockdowns of Twinfilin and CP each cause similar defects in cell morphology, and

elevated Twinfilin expression rescues defects caused by CARMIL hyperactivity. Together, these

observations define Twinfilin as the first ‘pro-capping’ ligand of CP and lead us to propose

important revisions to our understanding of the CP regulatory cycle.

DOI: https://doi.org/10.7554/eLife.41313.001

Introduction
Assembly of cellular actin structures with distinct architectural and dynamic properties requires the

convergence and coordination of numerous actin assembly, stabilization, and disassembly mecha-

nisms. Although our understanding of the functions and mechanisms of individual actin-binding pro-

teins has grown tremendously, there is a need to consider more deeply how seemingly disparate

and sometimes competing factors work together in vivo and take on new mechanistic roles within

more complex mixtures. One particularly enigmatic example is the interaction of Twinfilin with Cap-

ping Protein (CP). These two conserved proteins directly interact with high-affinity, and yet have

seemingly opposite effects on the barbed ends of actin filaments.

Twinfilin is one of five proteins in the Actin Depolymerization Factor-Homology (ADF-H) domain

family, of which ADF/Cofilin is the founding member (Poukkula et al., 2011). Twinfilin is unique

among the members of this family in containing two ADF-H domains, which are joined by a small

linker region and followed by a short C-terminal tail. Initial biochemical studies categorized Twinfilin

as an actin monomer sequestering factor because of its high affinity for ADP-bound G-actin and abil-

ity to inhibit subunit addition to either end of the filament (Goode et al., 1998; Vartiainen et al.,

2000; Wahlström et al., 2001). However, mouse Twinfilin was later shown to interact directly with

the barbed ends of actin filaments (Helfer et al., 2006; Paavilainen et al., 2007), and more recently

yeast Twinfilin was shown to accelerate depolymerization at actin filament ends (Johnston et al.,

2015). Alone, yeast Twinfilin enhanced barbed end depolymerization by 3-fold through a processive

filament end-attachment mechanism. Further, in conjunction with Srv2/CAP (cyclase-associated pro-

tein), yeast Twinfilin increased the rate of pointed-end depolymerization by over 15-fold
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(Johnston et al., 2015). More recently, it was shown that mouse Twinfilin isoforms accelerate

barbed end depolymerization, similar to yeast Twinfilin, but do not induce robust pointed end depo-

lymerization in conjunction with Srv2/CAP (Hilton et al., 2018). Collectively, these studies highlight

the biological significance of Twinfilin.

The conserved barbed-end effects of Twinfilin are particularly interesting given that both yeast

and mammalian Twinfilins bind to CP (Falck et al., 2004; Palmgren et al., 2001). Further, a barbed-

end regulatory role for Twinfilin is suggested by its localization to the tips of stereocilia and filopo-

dia, and to the barbed ends of Drosophila actin bristles (Peng et al., 2009; Rzadzinska et al., 2009;

Wahlström et al., 2001). In addition, Twinfilin localizes to endocytic actin patches in yeast, and to

lamellipodia and cell-cell junctions in animal cells (Goode et al., 1998; Vartiainen et al., 2000).

Twinfilin’s localization to cortical actin patches in yeast is dependent on its interaction with CP

(Palmgren et al., 2001). In both yeast and mammals, this interaction is mediated by conserved

sequences in the C-terminal tail region of Twinfilin (Falck et al., 2004). Despite the high affinity of

the Twinfilin-CP interaction (Kd ~10 nM for the yeast homologs [Poukkula et al., 2011]), studies have

revealed no significant effects of Twinfilin on the barbed end capping activity of CP in vitro, and

reciprocally, no obvious effect of CP on Twinfilin interactions with ADP-actin monomers (Falck et al.,

2004). Thus, the functional significance of the Twinfilin-CP interaction has remained highly

enigmatic.

CP is an obligate heterodimer, consisting of alpha and beta subunits, and binds stably to the

barbed ends of actin filaments to block subunit addition and loss. CP is ubiquitous and highly

eLife digest Plant and animal cells are supported by skeleton-like structures that can grow and

shrink beneath the cell membrane, pushing and pulling on the edges of the cell. This scaffolding

network – known as the cytoskeleton – contains long strands, or filaments, made from many

identical copies of a protein called actin. The shape of the actin proteins allows them to slot

together, end-to-end, and allows the strands to grow and shrink on-demand. When the strands are

the correct length, the cell caps the growing ends with a protein known as Capping Protein. This

helps to stabilize the cell’s skeleton, preventing the strands from getting any longer, or any shorter.

Proteins that interfere with the activity of Capping Protein allow the actin strands to grow or

shrink. Some, like a protein called V-1, attach to Capping Protein and get in the way so that it

cannot sit on the ends of the actin strands. Others, like CARMIL, bind to Capping Protein and

change its shape, making it more likely to fall off the strands. So far, no one had found a partner

that helps Capping Protein limit the growth of the actin cytoskeleton.

A protein called Twinfilin often appears alongside Capping Protein, but the two proteins seemed

to have no influence on each other, and had what appeared to be different roles. Whilst Capping

Protein blocks growth and stabilizes actin strands, Twinfilin speeds up their disassembly at their

ends. But Johnston, Hilton et al. now reveal that the two proteins actually work together. Twinfilin

helps Capping Protein resist the effects of CARMIL and V-1, and Capping Protein puts Twinfilin at

the end of the strand. Thus, when Capping Protein is finally removed by CARMIL, Twinfilin carries on

with disassembling the actin strands.

The tail of the Twinfilin protein looks like part of the CARMIL protein, suggesting that they might

interact with Capping Protein in the same way. Attaching a fluorescent tag to the Twinfilin tail

revealed that the two proteins compete to attach to the same part of the Capping Protein. When

mouse cells produced extra Twinfilin, it blocked the effects of CARMIL, helping to grow the actin

strands. V-1 attaches to Capping Protein in a different place, but Twinfilin was also able to interfere

with its activity. When Twinfilin attached to the CARMIL binding site, it did not directly block V-1

binding, but it made the protein more likely to fall off.

Understanding how the actin cytoskeleton moves is a key question in cell biology, but it also has

applications in medicine. Twinfilin plays a role in the spread of certain blood cancer cells, and in the

formation of elaborate structures in the inner ear that help us hear. Understanding how Twinfilin and

Capping Protein interact could open paths to new therapies for a range of medical conditions.

DOI: https://doi.org/10.7554/eLife.41313.002
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conserved across eukaryotes, and has universal roles in controlling the assembly of actin networks

that drive cell morphogenesis and cell motility (Cooper and Sept, 2008; Hart and Cooper, 1999;

Mejillano et al., 2004; Schafer et al., 1994; Schafer et al., 1995). In vitro, CP binds to the barbed

ends of actin filaments with sub-nanomolar affinity, and dissociates from barbed ends very slowly

(half-life of ~30 min) (Schafer et al., 1996). Given the relatively high abundance of CP in the cytosol

(1–3 mM) and the strength of its interactions with barbed ends (Cooper and Sept, 2008), it is not

surprising that cells have evolved a number of regulatory mechanisms to spatiotemporally restrict

CP activity.

Cellular protein inhibitors of CP broadly fall into two classes: steric inhibitors and allosteric inhibi-

tors. Steric inhibitors, which include V-1/myotrophin, bind to CP in a manner that physically obstructs

its association with barbed ends (Bhattacharya et al., 2006; Kim et al., 2007; Schafer et al., 1996).

V-1 is a highly abundant 13 kDa protein that binds CP with a Kd ~40 nM and sterically blocks its abil-

ity to bind barbed ends (Bhattacharya et al., 2006; Taoka et al., 2003). Notably, however, V-1

does not catalyze dissociation of CP from barbed ends (Bhattacharya et al., 2006). In contrast, allo-

steric inhibitors induce conformational changes in CP that catalyze its dissociation from barbed ends

(‘uncapping’ or ‘displacing’ CP), and also decrease but do not abolish its ability to bind barbed

ends.

The major class of allosteric inhibitors is the capping protein interaction (CPI) motif family of pro-

teins (Edwards et al., 2014). The founding and best characterized member of the CPI family is CAR-

MIL (Capping Protein, ARP2/3 and Myosin I linker), which is conserved across metazoans

(Stark et al., 2017). CARMIL catalyzes CP dissociation from barbed ends, reducing CP’s affinity for

barbed ends by ~100 fold, transforming it into a transient capper (Fujiwara et al., 2014;

Stark et al., 2017; Uruno et al., 2006; Yang et al., 2005). CARMIL localizes to the leading-edge

plasma membrane, where it promotes cell migration through direct interactions with CP

(Fujiwara et al., 2014; Liang et al., 2009; Stark et al., 2017; Yang et al., 2005). Other proteins

with CPI motifs include CD2AP, CKIP-1, CapZIP, CIN85, and WASHCAP (FAM21); their roles in regu-

lating CP are less well understood. CPI-motif proteins share a common mode of interaction with CP,

but are otherwise unrelated to each other (Edwards et al., 2014; Hernandez-Valladares et al.,

2010). To date, binding partners of CP that antagonize its inhibitors, and thus function as ‘pro-cap-

ping’ factors, have not been reported.

Here, we uncover a novel role for Twinfilin in protecting CP from the negative regulatory effects

of V-1 and CARMIL, and thus promoting actin filament capping. These and other data lead us to

propose important revisions to current models for the CP regulatory cycle.

Results

CP inhibits mTwf1-mediated depolymerization by capping barbed ends
Because CP binding proteins have been studied predominantly in mammalian systems, we focused

our investigation on mouse rather than yeast CP and Twinfilin. Mutagenesis on the yeast Twinfilin tail

previously identified a mutant, twf1-11, that targets a cluster of positively charged residues (R328A,

K329A, R330A, R331A) necessary for binding CP (Falck et al., 2004). While truncations of the C-ter-

minal tail in mouse Twinfilin (mTwf1) also disrupt CP binding, the residues involved have not yet

been defined. We therefore first sought to generate a specific mutant in mTwf1 that disrupts the

interaction, analogous to yeast twf1-11. An alignment of the three mouse and three human Twinfilin

isoforms, along with the single Twinfilin genes expressed in S. cerevisiae and D. melanogaster

(Figure 1A), revealed a region that includes two of the basic residues mutated in the yeast twf1-11

mutant. We mutated these two residues in mTwf1, changing them to alanines, to produce mTwf1-11

(K332A, R333A). To quantify binding of mTwf1 to CP, we performed fluorescence anisotropy assays

using a mTwf1 tail peptide (317-350) labeled at its N-terminus with HiLyte488. The mTwf1 tail pep-

tide displayed high affinity, concentration-dependent binding to CPa1b2, a major non-muscle iso-

form of CP in mammalian cells (Figure 1B). Moreover, full-length mTwf1 protein (unlabeled)

competed with the labeled mTwf1 tail for CP binding, whereas full-length mTwf1-11 (unlabeled) did

not (Figure 1C). Thus, the mTwf1-11 mutant effectively uncouples mTwf1 binding to CP.

Using mTwf1-11, we addressed how CP binding affects Twinfilin’s actin depolymerization activi-

ties in total internal reflection fluorescence (TIRF) microscopy assays, by directly observing
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depolymerization at actin filament barbed ends in real time. In agreement with previous observa-

tions using yeast and mouse Twinfilin (Hilton et al., 2018; Johnston et al., 2015), 1 mM mTwf1

accelerated barbed end depolymerization by 2–3 fold compared to control reactions (Figure 1D),

and the addition of CP blocked this effect (Figure 1E). Further, mTwf1-11 exhibited a similar rate

(Figure 1D), indicating that this mutant has wild type depolymerization activity, and thus separates

Twinfilin’s ability to bind CP from its ability to promote barbed-end depolymerization. Interestingly,

the addition of CP was still able to block barbed-end depolymerization by mTwf1-11 (Figure 1E).

These observations suggest that CP sterically blocks mTwf1 access to barbed ends, independent of

its direct interaction with mTwf1. However, this left open the question of whether CP binding to

mTwf1 might alter its mechanism of depolymerization independent of blocking the barbed end. To

Figure 1. Barbed end capping by Capping Protein inhibits Twinfilin1-mediated depolymerization. (A) Mouse Twinfilin-1 (mTwf1) domain organization:

ADF-H, actin depolymerization factor homology domain; L, linker; T, tail. Sequence alignment of tail regions of Twinfilin isoforms from different species

with boxed region highlighting conservation of residues critical for binding to Capping Protein (CP). mTwf1-11 carries a mutation in the tail region

(KR332,333AA) that disrupts binding to CP. (B) Fluorescence anisotropy measurement of 100 nM HiLyte488-labeled mTwf1 tail peptide mixed with

increasing concentrations of the indicated CP construct. (C) Fluorescence anisotropy measurement of 100 nM HiLyte488-labeled mTwf1 tail peptide

incubated in the presence 1 mM CP and increasing concentrations of either mTwf1 or mTwf1-11. Anisotropy values for each condition averaged from

three independent experiments. (D,E) Rates of barbed end depolymerization (subunits s�1) induced by 1 mM of the indicated mouse Twinfilin, in the (D)

absence or (E) presence of 10 nM CP, determined from TIRF assays. Rates for each condition averaged from at least five filaments in each of two

independent experiments. From left to right: (D) n = 19, 26, and 15 and mean depolymerization rates 1.13, 2.784 and 2.81 subunits s�1; (E) n = 13, 15,

and 20 and mean depolymerization rates 1.13, 2.784 and 2.81 subunits s�1. (F) Rates of barbed end depolymerization (subunits s�1) induced by 1 mM

mTwf1, in the absence or presence of 1 mM of the indicated CP construct, determined from TIRF assays. Rates for each condition averaged from at

least five filaments from at least one experiment. From left to right n = 21, 25, 6, and 10; mean depolymerization rates 1.45, 2.991, 0.11, and 3.58

subunits s�1. (G) Summary of barbed end depolymerization activity of mTwf1 constructs in combination with different CP constructs determined from

TIRF assays (as in D,E,F). Error bars, s.e.m. ****p�0.0001, n.s. p>0.05 by one-way ANOVA with Tukey post hoc test.

DOI: https://doi.org/10.7554/eLife.41313.003

The following video is available for figure 1:

Figure 1—video 1. Supporting data for Figure 1F.

DOI: https://doi.org/10.7554/eLife.41313.015
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address this possibility, we utilized a CP mutant, CPaD28, which truncates the C-terminal tentacle of

the alpha subunit, severely inhibiting capping activity (Kim et al., 2010). Importantly, in binding

assays the mTwf1 tail interacted equally well with wild-type CP and CPaD28, demonstrating that this

mutant binds normally to mTwf1 (Figure 1B). In TIRF assays, equimolar amounts of CPaD28 did not

significantly alter mTwf1 depolymerization activity (Figure 1F; Figure 1—video 1; also summarized

in Figure 1G), suggesting that while CP blocks Twinfilin access to barbed ends, Twinfilin-CP direct

interaction does not alter Twinfilin depolymerization activity.

The twinfilin tail competes with CARMIL CPI motif for binding to CP
Given that CP binding does not affect Twinfilin’s depolymerization activity, or other known activities

of Twinfilin (Falck et al., 2004; Johnston et al., 2015; Palmgren et al., 2001), we next considered

whether Twinfilin binding might influence CP functions in the presence of known regulators of CP.

We were particularly interested in how Twinfilin might impact the regulation of CP by CPI-motif pro-

teins such as CARMIL, since we noticed that the C-terminal tail regions of evolutionarily diverse

Twinfilins share sequence homology with the CPI motifs of several CPI family proteins (Figure 2A).

The consensus CPI motif is 17-amino acids long, with some additional contacts contributed from out-

side this motif, and tolerates significant divergence across the CPI-motif family (Edwards et al.,

2014; Hernandez-Valladares et al., 2010). As an initial test, we used a mutant of CP, CP(RY), which

alters two surface residues on the beta subunit (R15A, Y79A) that make essential contacts with CPI-

motif proteins (Edwards et al., 2014; Hernandez-Valladares et al., 2010). The CP(RY) mutant is

insensitive to inhibition and uncapping by CARMIL and disrupts binding with at least two other CPI-

motif proteins, CD2AP and WASHCAP (FAM21) (Edwards et al., 2015). In fluorescence anisotropy

binding assays, we observed that the CP(RY) mutant has approximately 20-fold reduced affinity for

mTwf1 tail compared to wild type CP (Figure 2B). These data are consistent with mTwf1 and CPI-

motif proteins sharing at least partially overlapping binding sites on CP. In addition, we asked

whether introducing a mutation in the mTwf1 tail peptide at a conserved residue in CPI consensus

sequences would alter binding to CP (Lys 325 in mTwf1; see red asterisk, sequence alignment in

Figure 2A). In fluorescence anisotropy binding assays, we compared the abilities of wild-type and

mutant (K325A) mTwf1 tail peptides to compete with labeled mTwf1 tail peptide for CP binding.

This analysis revealed an ~30 fold reduction in binding affinity for the mutant (K325A) mTwf1 tail

peptide compared to wild type peptide (Figure 2C).

We next asked whether the CP-binding region (CBR) of CARMIL1 (residues 964 – 1078) competes

with mTwf1 tail for binding to CP. We observed that unlabeled CBR peptide competed with the

fluorescent mTwf1 tail probe for CP binding (Figure 2D). These results indicate that CARMIL and

mTwf1 directly compete for binding CP. Next, we more narrowly defined the region of CARMIL that

competes with mTwf1 by using peptides that divide the CBR into its two conserved components,

the CPI motif (969 – 1005) and the CARMIL-specific interaction (CSI) motif (1019 – 1037). The CSI

makes additional contacts with CP, but is found only in CARMIL family members, and not in other

CPI-motif proteins (Edwards et al., 2014). As expected based on Twinfilin’s sequence similarity to

CPI motifs, only the CPI-motif peptide and not the CSI peptide competed with mTwf1 tail for CP

binding (Figure 2D). Together, these results suggest that Twinfilin is a divergent CPI-motif protein

and has important implications for CP regulation in cells (see Discussion).

Twinfilin attenuates CARMIL-mediated displacement of CP from barbed
ends
Given that CARMIL and Twinfilin compete for binding to CP, we asked whether mTwf1 affects CAR-

MIL’s ability to displace CP from barbed ends. We addressed this question in pyrene actin assembly

assays, where actin polymerization was initiated at time zero in the presence of CP and increasing

concentrations of mTwf1, and after 400 s CARMIL1 CBR was spiked into the reaction. CARMIL1

alone (no mTwf1) strongly induced uncapping, leading to the rapid polymerization of previously-

capped filament seeds (Figure 3A). However, increasing concentrations of mTwf1 attenuated CAR-

MIL’s uncapping effects (Figure 3A). These results are consistent with mTwf1 competing with CAR-

MIL for binding CP, and thereby blocking uncapping.

To more directly observe mTwf1 effects on CARMIL-induced uncapping of barbed ends, we used

TIRF microscopy. In these experiments, we used fluorescently labeled SNAP-tagged CP (SNAP-649-
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Figure 2. Twinfilin is a Capping Protein Interaction (CPI)-motif protein that competes with CARMIL for binding Capping Protein. (A) CARMIL domain

organization: PH, pleckstrin-homology domain; L, linker; N-cap (N), LRR, leucine-rich repeat domain; C, C-cap; HD, helical dimerization domain; CBR,

Capping Protein binding domain, consisting of CPI, Capping Protein interaction domain, and CSI, CARMIL-specific interaction sequence; MBD,

membrane binding domain; PRD, proline-rich domain. Alignment between the Capping Protein Interaction (CPI) motif consensus sequence, and the

CPI regions of H. sapiens (H.s.) CARMIL1 (UniProtKB Q5VZK9.1), CARMIL2 (UniProtKB Q6F5E8.2), CARMIL3 (UniProtKB Q8ND23.2), CKIP1 UniProtKB

Q53GL0.2), CD2AP (CBI NP_036252.1), WASHCAP (Fam21) (UniProtKB Q9Y4E1.3), CapZIP (CBI NP_443094.3), CIN85 (UniProtKB Q96B97.2), and the tail

sequences of Twinfilin homologs from D. melanogaster (D.m), C. lectularius (C.l.), S. cerevisiae (S.c.), O. Taurus (O.t.), S. litura (S.l.), D. rerio (D.r.), H.

sapiens (H.s.), and M. musculus (M.m.). Twinfilin isoforms (D.m. Twf1 UniProtKB NP_650338, C.l. Twf1 UniProtKB XP_014258437.1, S.c. Twf1 GenBank

GAX68393.1, O.t. Twf1 XP_022917989.1, S.l. Twf1 XP_022816377.1, D.r. Twf1 AAH67638.1, H.s. Twf1 UniProtKB NO_001229326.1, and M.m. Twf1

GenBank AAH15081.1). Amino acid color coding illustrates side chain chemistry similarities. The asterisk marks the residue we mutated in mTwf1 in

panel. (C) The alignments were generated using the MAFFT algorithm in the DNASTAR Lasergene Suite/MegAlign Pro application (MegAlign Pro.

Version 15.0. DNASTAR. Madison, WI.).(B) Fluorescence anisotropy measurement of 60 nM HiLyte488-labeled mTwf1 tail peptide mixed with increasing

concentrations of the indicated CP construct. (C) Fluorescence anisotropy measurement of 40 nM TAMRA-labeled mTwf1 tail peptide incubated with 1

mM CP and different concentrations of wild type and mutant mTwf1 tail peptides. (D) Fluorescence anisotropy measurement of 60 nM HiLyte488-

labeled mTwf1 tail peptide incubated in the presence of 240 nM CP and increasing concentrations of the indicated CARMIL fragment (CBR, CSI, or

CPI). CSI failed to compete with HiLyte 488-mTwf1 tail peptide at the concentrations tested. Anisotropy values for each condition were averaged from

three independent experiments.

DOI: https://doi.org/10.7554/eLife.41313.004

Johnston et al. eLife 2018;7:e41313. DOI: https://doi.org/10.7554/eLife.41313 6 of 28

Research article Cell Biology

https://doi.org/10.7554/eLife.41313.004
https://doi.org/10.7554/eLife.41313


Figure 3. Direct interactions of Twinfilin with Capping Protein attenuate CARMIL-mediated uncapping. (A) Bulk fluorescence assays comparing the

rates of actin assembly in the presence of 25 nM muscle Capping Protein (CPa1b1) and increasing concentrations of mTwf1. To initiate uncapping, 250

nM CBR fragment of CARMIL (see schematic, Figure 2A) was spiked into the reaction at 400 s. Data shown are representative curves from experiments

repeated three independent times. (B) Representative time-lapse images from TIRF microscopy assays monitoring the displacement of labeled CP from

barbed ends. Filaments were first polymerized and tethered using 1 mM actin (10% OG-labeled, 0.5% biotin–actin), then capped at their barbed ends

by flowing in SNAP-649-CP (100% labeled). Next, 50 nM CBR fragment of CARMIL and different concentrations of mTwf1 were flowed in, and CP

dissociation was monitored over time. Scale bar, 5 mm. (C) Quantification of the percentage of filaments retaining CP at the barbed ends in the

presence of 50 nM CBR fragment of CARMIL and variable concentrations of mTwf1, determined from TIRF reactions as in (B). Control curve, buffer

alone (no CBR or mTwf1). n > 45 events measured from at least two independent experiments. (D) Representative time-lapse images from TIRF

microscopy assays monitoring CP displacement from barbed ends, analyzed as in (B), except using 1 mM mTwf1-11 instead of mTwf1. n > 45 events

measured from at least two independent experiments. (E) Quantification of the percentage of filaments retaining CP at the barbed end in the presence

of 50 nM CBR fragment of CARMIL and different concentrations of mTwf1-11, determined from TIRF assays as in (D). n > 45 events measured from at

least two independent experiments.

DOI: https://doi.org/10.7554/eLife.41313.005

The following figure supplement is available for figure 3:

Figure supplement 1. Supporting data for Figure 3 showing that multiple Twinfilin isoforms antagonize CARMIL uncapping of barbed ends.

Figure 3 continued on next page
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CP; 100% labeled) to monitor lifetimes of CP molecules on filament barbed ends

(Bombardier et al., 2015). Filaments were first polymerized to a desired length (~10 mm) and then

capped by flowing in SNAP-649-CP. Free CP was washed out, and then proteins of interest (or con-

trol buffer) were flowed in. Capped filaments were identified in the field of view prior to flow-in, and

then monitored after flow-in to measure the dwell time of SNAP-649-CP. As expected, in the

absence of other factors, SNAP-649-CP had a long dwell time, remaining on barbed ends for tens of

minutes (Figure 3B and C). However, when CARMIL1 CBR was introduced, this led to the rapid dis-

placement of SNAP-649-CP, with complete loss of CP from barbed ends by 100 s (Figure 3B and

C). The addition of mTwf1 with CARMIL1 CBR attenuated the uncapping effects in a concentration-

dependent manner (Figure 3B and C). Further, this attenuation required direct interactions between

Twinfilin and CP, as mTwf1-11 failed to protect CP from CARMIL uncapping (Figure 3D and E and

Figure 3—figure supplement 1). Similar effects were observed for the other major isoform of

mouse Twinfilin that is expressed in non-muscle cells, mTwf2a (Figure 3—figure supplement 1)

(Nevalainen et al., 2011; Vartiainen et al., 2003).

Twinfilin accelerates the dissociation of V-1 from CP
We next considered whether Twinfilin binding to CP might affect the activities of CP inhibitor V-1/

myotrophin, which is distinct from CPI-motif proteins in its mode of CP interaction. Unlike CARMIL,

V-1 does not displace CP from barbed ends; instead, it sequesters CP and blocks it from binding fila-

ment ends (Bhattacharya et al., 2006; Jung et al., 2016; Taoka et al., 2003). In contrast to the

CARMIL binding site on CP, which partially encircles the ‘stalk’ of the CP heterodimer (Hernandez-

Valladares et al., 2010; Johnson et al., 2018; Zwolak et al., 2010), V-1 interacts with CP on the

opposite face, sterically blocking binding to the filament end (Johnson et al., 2018; Takeda et al.,

2010; Zwolak et al., 2010). To test how Twinfilin might affect the interaction of CP with V-1, we

used pyrene-actin seeded elongation assays (Figure 4A). As expected, filament seeds pre-incubated

with CP and then mixed with pyrene-actin monomers displayed minimal growth, whereas the addi-

tion of V-1 restored actin assembly to uncapped levels. Somewhat to our surprise, the further addi-

tion of mTwf1 suppressed V-1’s effects, restoring capping activity, while mTwf1-11 had no effect

(Figure 4A and B). These effects were unexpected given the above-mentioned differences in Twinfi-

lin’s predicted and V-1’s known binding sites on CP, and our observation that even high concentra-

tions of V-1 (1000-fold excess to mTwf1 tail probe) fail to compete with mTwf1 for CP binding in

anisotropy assays (Figure 4C). These results suggest that mTwf1 attenuates V-1 effects on CP via an

allosteric mechanism, distinct from a simple steric binding competition.

In probing the mechanism further, we drew inspiration from a study by Fujiwara and colleagues,

showing that CARMIL forms a transient ternary complex with V-1 and CP, leading to accelerated dis-

sociation of V-1 from CP (Fujiwara et al., 2014). We asked whether mTwf1 might similarly catalyze

the dissociation of V-1 from CP. In stopped-flow fluorescence assays, fluorescently labeled V-1

(TAMRA-V-1) was first allowed to bind CP, and then mixed at time zero with an excess of unlabeled

V-1. The resulting decrease in fluorescence reflects the spontaneous dissociation of TAMRA-V-1

from CP (Figure 4D). The rate of V-1 dissociation from CP increased in the presence of increasing

concentrations of mTwf1, pointing to the possible formation of a transient ternary complex that

destabilizes V-1 interactions with CP (Figure 4D and E). Importantly, mTwf1-11 failed to enhance

V-1 dissociation (Figure 4E), showing that this effect depends on direct interactions between mTwf1

tail and CP. These results demonstrate that CARMIL and Twinfilin share a common function in cata-

lyzing the dissociation of V-1 from CP using their CPI motifs to bind CP, despite having different

effects on the displacement of CP from barbed ends.

Structural evidence for the twinfilin tail interacting with the CPI-binding
site on CP
Given the observed competition between mTwf1 tail peptide and the CPI motif of CARMIL for bind-

ing to CP, and the similarity between mTwf1 and CARMIL in catalyzing V-1 dissociation from CP, we

Figure 3 continued

DOI: https://doi.org/10.7554/eLife.41313.006
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sought structural evidence for the nature of the interaction between mTwf1 and CP. We hypothe-

sized that the binding sites for mTwf1 and the CPI motif were likely overlapping. To test this hypoth-

esis, we used hydrogen-deuterium exchange with mass spectrometry (HDX-MS) to interrogate the

conformational dynamics and solvent accessibility of the backbone and sidechains of CP, free and in

complex with Twf1. Further, we compared our results to those in our recent study on the interactions

of CARMIL with CP using the same approach (Johnson et al., 2018). We tested three different

forms of mTwf1: a short tail peptide (residues 317–350), a longer tail peptide (residues 305–350),

and full-length mTwf1. These constructs were added to CP, either full-length alpha/beta hetero-

dimer, or full-length alpha subunit with a beta subunit truncated at its C-terminus, removing the

actin-binding beta tentacle. The results were essentially the same in each case. The presence of

mTwf1 resulted in protection from H-D exchange at the N-terminal stalk of CP (Figure 5A, Fig-

ure 5—figure supplements 1 and 2). Similar effects to H-D exchange were observed upon CARMIL

binding to CP (Johnson et al., 2018); also shown here in Figure 5B), which correspond well with the

CPI-motif binding site defined by X-ray crystallography and solution NMR studies (Hernandez-

Figure 4. Twinfilin’s direct binding to Capping Protein accelerates the disassociation of V-1 to promote capping of filaments. (A, B) Seeded elongation

assays comparing the rates of actin assembly from spectrin-F-actin seeds (grey) in the presence of 0.5 mM actin (10% pyrene-labeled), 25 nM muscle

Capping Protein (CapZ), 500 nM V-1, and variable concentrations of mTwf1 (A) or mTwf1-11 (B) as indicated. Data shown are representative curves from

experiments performed three independent times. (C) Fluorescence anisotropy measurement of 100 nM HiLyte488-labeled mTwf1 tail peptide mixed

with 1 mM mouse Capping Protein (CP) and variable concentrations of CBR fragment of CARMIL or V-1. Rates for each condition averaged from three

independent experiments. (D) Stopped-flow fluorescence assays measuring the kinetics of dissociation of 50 nM TAMRA-V-1 from 1 mM CP upon

addition at time zero of 2.5 mM unlabeled V-1 and variable concentrations of mTwf1 as indicated. Apparent dissociation rates are listed for each

condition. (E) Apparent dissociation rates of TAMRA-V-1 for different concentrations of mTwf1 are from (D); and for 12 mM mTwf1�11 = 1.0 ± 0.003 s�1.

Anisotropy values for each condition were averaged from five independent experiments.

DOI: https://doi.org/10.7554/eLife.41313.007
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Valladares et al., 2010; Takeda et al., 2010; Zwolak et al., 2010). For mTwf1, we also observed

H-D exchange protection of a small region on CP corresponding to the V-1 binding site (Figure 5A

and B, Figure 5—figure supplements 1 and 2), consistent with our results described above for the

effects of mTwf1 in promoting V-1 dissociation from CP. These structural effects are also consistent

with our previous results for CARMIL, which alters the V-1 binding site (Johnson et al., 2018). How-

ever, it is worth noting that mTwf1-induced changes in CP conformation at the actin-binding

Figure 5. HDX-MS analysis of Twinfilin reveals effects on Capping Protein structure near the CPI motif-binding site. (A) A cartoon representation of a

crystal structure of CP, based on PDB 3AAA (Takeda et al., 2010). Differences in deuterium uptake induced by mTwf1 binding to CP are displayed as a

color gradient (see scale at bottom of panel (B) CPI domain of CARMIL overlaid on to its binding site on CP (around the stalk). Representative

comparisons of deuterium uptake curves for free CP (black) with mTwf1 bound CP (red) for CP alpha subunit (upper panels) and CP beta subunit (lower

panels). Error bars representing the results of t-tests between samples are shown above each time point to illustrate statistical significance. When error

bars are not shown explicitly, the error is within the radius of the symbol. Data shown are representative curves from experiments repeated two

independent times. (B) A cartoon representation of a crystal structure of CP, showing the differences in deuterium uptake induced by CBR domain of

CARMIL binding to CP are displayed as a color gradient (see scale at the bottom). CPI domain of CARMIL overlaid on to its binding site on CP (around

the stalk), V-1 is overlaid on its binding site on CP (barbed end binding surface) for comparison.

DOI: https://doi.org/10.7554/eLife.41313.008

The following figure supplements are available for figure 5:

Figure supplement 1. Supporting data for Figure 5 showing differential HDX results.

DOI: https://doi.org/10.7554/eLife.41313.009

Figure supplement 2. Supporting data for Figure 5 showing differential HDX results.

DOI: https://doi.org/10.7554/eLife.41313.010
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interface were not as extensive as those induced by CARMIL, which is consistent with CARMIL, but

not mTwf1, weakening CP binding to actin at the barbed ends.

Twinfilin and CP colocalize in cells and have similar knockdown
phenotypes
To investigate the functional relationship between Twinfilin and CP in cells, we started by asking

whether mTwf1 and CP colocalize. While Twinfilin and CP have been localized individually, and are

each reported to be enriched at the tips of filopodia and stereocilia, endocytic actin patches, lamelli-

podia, and Drosophila bristles (Avenarius et al., 2017; Falck et al., 2004; Goode et al., 1998;

Nevalainen et al., 2011; Peng et al., 2009; Rzadzinska et al., 2009; Sinnar et al., 2014;

Vartiainen et al., 2000), to our knowledge they have never been co-imaged in vertebrate cells. To

address this, we performed immunofluorescence on CP and Twinfilin in mouse B16F10 melanoma

cells, co-staining the cells with Alexa 568-phalloidin to visualize F-actin. We observed strong colocali-

zation of Twinfilin and CP throughout the cell and a co-enrichment at the actin-rich leading and trail-

ing edges (Figure 6A and B). Further, quantitative western blotting showed that Twinfilin and CP

are present at ~1:2 molar ratio in B16F10 cells (Figure 6C, Figure 6—figure supplement 1). Previ-

ous studies reported the concentration of CP in B16F10 cells to be ~1 mM (Fujiwara et al., 2014;

Pollard and Borisy, 2003), suggesting that mTwf1 is present at ~0.5 mM. Given the high affinity of

the Twinfilin-CP interaction (Kd = 50 nM), these observations are consistent with mTwf1 being associ-

ated with a substantial fraction of the CP in cells.

The ability of Twinfilin to function as a ‘pro-capping’ factor in vitro, by antagonizing the inhibitory

effects of V-1 on CP, predicted that genetic loss of mTwf1 might at least partially phenocopy loss of

CP. While a number of studies have examined how Twinfilin mutations affect whole animal develop-

ment and physiology (Iwasa and Mullins, 2007; Meacham et al., 2009; Nevalainen et al., 2011;

Wahlström et al., 2001; Wang et al., 2010; Yamada et al., 2007), we are unaware of any studies

that have investigated how loss of Twf1 affects the morphology and actin organization of cultured

mammalian cells. Using RNAi silencing in B16F10 cells, we separately depleted endogenous mTwf1

and CP, which was verified by both western blotting (Figure 6E and F) and immunostaining (Fig-

ure 6—figure supplement 1). Knockdown of either mTwf1 or CP led to a similar, marked increase in

the density of peripheral protrusions or microspikes with a concomitant loss of lamellipodial surfaces

(Figure 6F and G). Similar phenotypes have been reported for CP depletion in multiple cell lines

(Edwards et al., 2013; Edwards et al., 2015; Mejillano et al., 2004; Sinnar et al., 2014). Expres-

sion of an RNAi-refractive mTwf1 construct, but not mTwf1-11, rescued the defects caused by deple-

tion of endogenous mTwf1 (Figure 6F and G; Figure 6—figure supplement 1), demonstrating that

these cellular functions of mTwf1 critically depend on its interaction with CP.

We also made the unexpected observation that knockdown of CP was accompanied by a dra-

matic reduction in Twinfilin levels in cells, as seen by both western blotting (Figure 6D) and immuno-

fluorescence (Figure 6—figure supplement 1). This effect was confirmed using a second RNAi

oligonucleotide that targets a different region of CP (siCP2, Figure 6D). Further, it was observed in

additional cell lines besides B16F10, including Neuro-2A and NIH-3T3 cells (Figure 6—figure sup-

plement 1). These observations support the closely intertwined relationship of CP and Twinfilin in

vivo.

Our results above also call into question whether the full extent of the phenotype caused by

knockdown of CP (Figure 6G) is due to loss of CP, or instead is partly due to the accompanying loss

of Twinfilin. To address this, we restored mTwf1 levels in cells depleted of CP by driving mTwf1

expression from a rescue plasmid, which was confirmed by western blotting and immunofluores-

cence (Figure 6—figure supplement 1). Forced expression of mTwf1 partially rescued the defects

associated with CP depletion, indicating that a portion of the original defects observed after CP

knockdown were likely due to the accompanying loss of mTwf1. These observations also suggest

that many previously reported phenotypes arising from CP knockouts and knockdowns should be

revisited or reinterpreted with the potential loss of Twinfilin in mind.
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Figure 6. mTwf1 and Capping Protein colocalize and have similar phenotypes in B16F10 melanoma cells. (A) Representative images from

immunofluorescence staining showing colocalization of endogenous mTwf1 (yellow) and Capping Protein (magenta). Scale bar, 20 mm. Close ups of

boxed regions shown in Zooms; scale bar, 4 mm. (B) Mander’s correlation coefficient (M1 and M2) values of overlap between mTwf1 and Capping

Protein (CP) measured from cells (n = 67 cells) as in (A). Error bars, s.e.m. (C) Comparison of the relative abundance of mTwf1 and Capping Protein (CP)

in B16F10 cells measured from western blot analysis. Data averaged from four separate experiments. Error bars, s.d. n.s. p>0.05 by t-test. (D,E)

Representative western blots and quantification of cellular levels of mTwf1 (D) and CP (E) in B16F10 cells treated with siRNA against mTwf1 (si-Twf1) or

Figure 6 continued on next page
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Defects caused by CARMIL1 hyperactivity can be rescued by elevated
twinfilin expression
Finally, we tested the prediction of our biochemical observations that loss of capping activity in cells

caused by overexpressed CARMIL1 should be restored by co-overexpression of Twf1. B16F10 cells

ectopically expressing CARMIL1 showed morphological defects similar to loss of CP, and ectopic

mTwf1 expression rescued the defects (Figure 7A and B). Importantly, ectopic expression of mTwf1

alone caused no significant change in cell morphology. These results support our biochemical obser-

vations, and suggest that Twf1 promotes capping in vivo, at least in part by competing with CARMIL

for CP binding and antagonizing the uncapping effects of CARMIL.

Discussion
Twinfilin and CP have been inextricably linked as interacting partners in yeast and animal cells for

over 15 years (Palmgren et al., 2001), yet until now it has remained a mystery what function their

interaction serves. Here we discovered that Twinfilin binds to CP using an orphan CPI-like sequence

in its C-terminal tail region, and through this interaction protects CP from inhibition and/or barbed

end displacement by CARMIL and V-1. We found that Twinfilin binds to CP in a competitive manner

with the CPI motif of CARMIL, interacts with a site on CP similar to that of CARMIL, and attenuates

CARMIL-mediated uncapping of actin filaments. Separately, Twinfilin binding to CP also accelerates

V-1 dissociation from CP, despite Twinfilin and V-1 having non-overlapping binding sites on CP. This

might be achieved by an allosteric mechanism, given that CARMIL uses its CPI motif to induce V-1

dissociation from CP through allosteric changes (Fujiwara et al., 2014; Johnson et al., 2018). Thus,

we have demonstrated that Twinfilin promotes capping by protecting CP from interactions with V-1

and CARMIL. This functional role for Twinfilin is further supported in vivo by our observations of: (i)

strong colocalization of Twinfilin and CP, (ii) knockdowns of mTwf1 and CP that each give rise to sim-

ilar defects in cell morphology, and (iii) over-expression of mTwf1 suppressing defects caused by

CARMIL hyperactivity. Taken together, these results reveal that Twinfilin is a new member of the

CPI-motif family of proteins, and the first within this group to show the ability to bind CP without

reducing CP affinity for barbed ends, and antagonize the negative regulatory effects of another CPI

protein.

These functions of Twinfilin provide important new insights into the CP regulatory cycle. The best

working model to date has been the Fujiwara model (Fujiwara et al., 2014) (depicted here as ‘Ear-

lier Model’; Figure 7C). It posits that the majority of CP in the cytosol is bound to V-1, in an inactive

state, which then can be locally ‘activated’ by CARMIL at the leading edge. However, a caveat to

this model is that it suggests CP-CARMIL complexes are the dominant capping species in the cell,

despite this complex having ~100 fold reduced affinity for barbed ends compared to free CP. While

this could potentially explain dynamic capping and uncapping near the plasma membrane, consis-

tent with GFP-CP single molecule speckle analysis (Miyoshi et al., 2006), it does not explain how

cells maintain a pool of ‘capping competent’ CP further back from the leading edge, where CP is

needed to cap barbed ends in stress fibers and other actin networks, and may cap barbed ends gen-

erated by severing to promote filament disassembly. This model goes on to suggest that an

Figure 6 continued

CP (si-CP) or negative control (Control). Band intensity for control cells was set to 1.0. Data averaged from at least three separate experiments., error

bars, s.d. (F) Representative images showing F-actin immunofluorescence in B16F10 cells treated with siRNA against mTwf1 (si-Twf1) or CP (si-CP) or

negative control (Control); siRNA treated cells (si-Twf1 or si-CP) were also rescued using plasmids expressing si-resistant FL-myc-mTwf1 (WT or mTwf1-

11). Scale bar, 20 mm. Close ups of boxed regions shown in Zooms; scale bar, 4 mm. (G) Microspike density in cells treated as in (D). Box and whisker

plots show mean, first and third quartile, and the maximum and minimum values. Data averaged from two experiments. From Left to right: n = 45, 53,

51, 24, 24, and 20 and mean microspike density 0.69, 1.34, 1.77, 0.59, 1.24, and 1.01 filopodia per 10 mm of cell cortex. Error bars, s.e.m. ****p�0.0001,

*p�0.05, n.s. p>0.05 by one-way ANOVA with Tukey post hoc test.

DOI: https://doi.org/10.7554/eLife.41313.011

The following figure supplement is available for figure 6:

Figure supplement 1. Supporting data for Figure 6.

DOI: https://doi.org/10.7554/eLife.41313.012
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Figure 7. Overexpression of Twinfilin suppresses morphological defects caused by CARMIL hyperactivity. (A) Representative images of F-actin staining

in untreated B16F10 cells (control), and cells transfected with Flag-CARMIL1, full-length (FL)-myc-mTwf1, or both. Scale bar, 20 mm. (B) Average

Microspike density in cells treated as in (A). Box and whisker plots show mean, first and third quartile, and the maximum and minimum values. Data

averaged from two experiments (n = 19–25 cells per condition). Data averaged from two experiments. From Left to right: n = 19, 25, 20, and 25; mean

microspike density 0.75, 1.13, 0.62, 0.58 filopodia per 10 mm of cell cortex. Error bars, s.e.m. ***p�0.001, n.s. p>0.05 by one-way ANOVA with Tukey

post hoc test. (C) ‘Earlier’ model for CP regulatory cycle, adapted from Fujiwara and colleagues (Fujiwara et al., 2014). Proposed steps in model: (1)

V-1 globally inhibits Capping Protein (CP) in the cytoplasm, (2) membrane-associated CARMIL (at the protruding cell edge) catalyzes dissociation of V-1

from CP, (3) the resulting CARMIL-CP complex is partially active, binding weakly to free barbed ends to provide capping function, (4) an unknown factor

or mechanism promotes dissociation of CARMIL from CP, allowing V-1 to rebind CP and complete the cycle. (D) Our revised working model for the CP

regulatory cycle. We propose that V-1 functions to maintain a cytosolic reservoir of inactive CP, from which Twinfilin and CARMIL activate CP,

generating two distinct forms of active CP in cells: Twinfilin-CP complexes and CARMIL-CP complexes. Twinfilin-CP complexes are fully active and

support stable capping of barbed ends. In contrast, CARMIL-CP complexes have ~100 fold reduced affinity for barbed ends, and may therefore more

transiently cap barbed ends, permitting restricted network growth at the cell membrane where CARMIL localizes. CARMIL and Twinfilin directly

compete with each other for binding CP (shown in close up of Transition state), which may result in the displacement of CP from Twinfilin. This would

leave Twinfilin at the barbed end to catalyze depolymerization, or alternatively return filaments back to the original state of assembly.

DOI: https://doi.org/10.7554/eLife.41313.013

The following figure supplement is available for figure 7:

Figure supplement 1. Structural model for a ternary complex formed by Twinfilin, Capping Protein and the barbed end of an actin filament.

Figure 7 continued on next page

Johnston et al. eLife 2018;7:e41313. DOI: https://doi.org/10.7554/eLife.41313 14 of 28

Research article Cell Biology

https://doi.org/10.7554/eLife.41313.013
https://doi.org/10.7554/eLife.41313


unknown factor or mechanism dissociates the CP-CARMIL complex, allowing V-1 to rebind CP,

restoring it to an inactive state.

In light of our results, we propose several additions and revisions to the Fujiwara model (see

‘Revised Model’; Figure 7D). First, we suggest that Twinfilin’s protective effects on CP, in particular

against V-1, allow cells to maintain a larger pool of fully active CP (Twinfilin-CP complexes) in the

cytosol than was previously thought. This view is supported by the relatively high abundance of

Twinfilin in cells (~0.5 mM, compared to ~1 mM CP) its high affinity for CP (Kd = 50 nM), and its ability

to increase the rate of dissociation of V-1 from CP. Given these observations, we propose that a sub-

stantial fraction of CP is available in a fully active state, as Twinfilin-CP complexes, even in the pres-

ence of a high concentration of V-1 in the cytosol (~3 mM) (Fujiwara et al., 2014; Pollard and

Borisy, 2003). Second, we propose that V-1 functions to maintain a cytosolic reservoir of inactive

CP, mobilized by Twinfilin and/or CARMIL dissociating V-1 to generate ‘stable capping’ (Twinfilin-

CP) in the cytosol and possibly ‘transient capping’ (CARMIL-CP) complexes at the plasma mem-

brane, respectively. CARMIL-CP complexes at the plasma membrane could facilitate actin network

growth to drive leading edge protrusion. In contrast, Twinfilin-CP complexes in the cytosol may facil-

itate stable capping of barbed ends to limit network growth and promote filament disassembly and

turnover. Third, we propose that the association of Twinfilin-CP complexes with barbed ends primes

filaments for disassembly. Our data show that CARMIL, and/or other CPI proteins, compete with

Twinfilin for binding CP. These interactions may competitively remove CP from barbed ends, leaving

Twinfilin at the barbed end to processively depolymerize filaments, either alone or in combination

with Srv2/CAP (as depicted in Figure 6D) (Hilton et al., 2018; Johnston et al., 2015). In this man-

ner, the interaction of Twinfilin with CP could serve not only to initially promote capping, and thus

limit network growth, but also to position Twinfilin at barbed ends for subsequently catalyzing the

disassembly of filaments.

In summary, our results show that functions of mammalian Twinfilin and CP are closely inter-

twined. This functional relationship is likely to extend to other species given CPI motif sequence con-

servation in the Twinfilin tail region (Figure 2A) and the conserved nature of the Twinfilin-CP

interaction. Indeed, S. cerevisiae Aim21 was recently identified as the first yeast CPI motif-containing

protein, and was shown to regulate CP function at cortical actin patches (Farrell et al., 2017;

Shin et al., 2018). We generated a structural model to explore the possible ternary complex formed

by Twinfilin, CP, and the barbed end of an actin filament (Figure 7—figure supplement 1). In this

model, the Twinfilin tail is long enough to allow for simultaneous binding of Twinfilin’s CPI motif to

CP and Twinfilin’s C-terminal ADFH domain to an actin subunit at the barbed end. Further, there are

no clashes in binding between CP and Twinfilin on actin. It is worth noting that CP and Twinfilin

appear to be able to associate with barbed ends individually or as a CP-Twinfilin complex, but with

distinct consequences for the function and dynamics of actin networks. CP alone stably caps barbed

ends, blocking subunit addition or loss, and our results suggest that CP-Twinfilin complexes may do

the same. However, when Twinfilin alone associates with barbed ends, it drives processive depo-

lymerization, while blocking new assembly (Hilton et al., 2018; Johnston et al., 2015). Thus, despite

key differences in the nature of their associations with barbed ends, CP and Twinfilin each inhibit fila-

ment growth, likely explaining why Twinfilin can replace CP in reconstituted actin motility assays in

vitro (Helfer et al., 2006).

Finally, our data add to a broader emerging view that actin dynamics in vivo are controlled by a

complex set of barbed end-associated factors, many of which interact with each other and/or stimu-

late each other’s dissociation from barbed ends. These multi-component mechanisms may allow cells

to control rapid transitions at filament ends through different functional states, including (i) formin-

bound elongation, (ii) paused growth by formin-CP ‘decision complexes’, (iii) stable or transiently

capped states by CP alone or CP-Twinfilin complexes (Bombardier et al., 2015; Shekhar et al.,

2015), and (iv) depolymerization by Twinfilin, Cofilin, and/or Srv2/CAP. These molecular mechanisms

for regulating barbed end growth are vastly more elaborate and dynamic than once thought, and

help explain the exquisite spatiotemporal control that cells have in tuning actin network dynamics.

Figure 7 continued

DOI: https://doi.org/10.7554/eLife.41313.014
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Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody Rabbit anti-
Twinfilin

Pekka
Lappalainen
(Univ. Helsinki)

WB (1:1000)
IF (1:100)

Antibody mouse anti-
Capping Protein

Development
Studies
Hybridoma
Bank

Cat: 3F2 WB (1:2000)
IF (1:50)

Antibody Mouse anti-
Flag

Sigma
Aldrich

Cat:
F3165

WB (1:5000)
IF (1:500)

Antibody Rabbit anti-
Myc

GeneTex Cat:
GTX29106

WB (1:5000)
IF (1:500)

Antibody Goat anti-
mouse-HRP

GE
Healthcare

Cat: 31430 WB (1:10000)

Antibody Goat anti-
rabbit-HRP

GE Health
care

Cat: 31460 WB (1:10000)

Antibody Donkey anti-rabbit
Alexa Flour 488

Thermo Fisher
Scientific

Cat: A21206 IF (1:1000)

Antibody Donkey anti-
mouse Alexa
Flour 488

Thermo
Fisher
Scientific

Cat: A21202 IF (1:1000)

Antibody Goat anti-
rabbit Alexa
Flour 633

Thermo
Fisher
Scientific

Cat: A21071 IF (1:1000)

Antibody Donkey anti-
mouse Alexa
Flour 647

Thermo
Fisher
Scientific

Cat: A31571 IF (1:1000)

Cell line
(M. musculus)

B16F10 ATCC CRL-6475

Cell line
(M. musculus)

Neuro-2A
neuroblast

ATCC CCL-131

Cell line
(M. musculus)

NIH3T3
filbroblast

ATCC CRL-1658

Chemical
compound,
drug

NHS-XX-
Biotin

Merck KGaA Cat: 203188

Chemical
compound,
drug

Oregon-Green-488
iodoacetamide

Invitrogen Cat: O6010

Chemical
compound,
drug

Ni2+-NTA-
agarose beads

Qiagen Cat: 30230

Chemical
compound,
drug

tetrame
thylrhodamine
(TAMRA)�5-
maleimide

Invitrogen Cat: T6027

Chemical
compound,
drug

methoxy-poly
(ethylene glycol)-
silane

Laysan
Bio Inc

Chemical
compound,
drug

biotin-poly
(ethylene glycol)-
sil

Laysan
Bio Inc

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Chemical
compound,
drug

AquaMount Thermo Fisher
Scientific

Cat: 14-390-5

Chemical
compound,
drug

Alexa Flour
568-
phalloidin

Thermo Fisher
Scientific

Cat: A12380 IF (1:1000)

Chemical
compound,
drug

Formaldehyde
37%

Sigma
Aldrich

Cat: 252549

Commercial
assay
or kit

Lipofectamine
RNAiMAX

Thermo Fisher
Scientific

Cat: 137780–0775

Commercial
assay or
kit

Lipofectamine
3000

Thermo Fisher
Scientific

Cat: L2000-015

Commercial
assay or kit

Pierce ECL
Western Blotting
Substrate
detection
kit

Thermo
Fisher
Scientific

Cat: 34580

Other DMEM-Dulbecco’s
Modified Eagle
Medium

Gibco BRL Life
Technologies

Cat: 11995–073

Other FBS-Fetal
Bovine Serum

Sigma
Aldrich

Cat: F9423

Other 200 mM L-
glutamine

Thermo
Fisher
Scientific

Cat: 25030–081

Peptide,
recombinant
protein

N-terminal
HiLyte488
mTwf1 Tail

Anaspec

Peptide,
recombinant
protein

CARMIL
CPI

WatsonBio
Sciences

Peptide,
recombinant
protein

CARMIL
CSI

WatsonBio
Sciences

Peptide,
recombinant
protein

mTwf1 A305-
D350

WatsonBio
Sciences

Peptide,
recombinant
protein

mTwf1
A305-D350,
K325A

WatsonBio
Sciences

Peptide,
recombinant
protein

PreScission
protease

GE
Healthcare

Cat: GE27-0843-01

Recombinant
DNA reagent

chicken
CPa1b1

Soeno et al., 1998
Soeno et al., 1998

Plasmid

Recombinant
DNA reagent

chicken SNAP-
CPa1b1

Bombardier et al., 2015
Bombardier et al., 2015

Plasmid

Recombinant
DNA reagent

mouse
CPa1b2

Kim et al., 2012 Plasmid

Recombinant
DNA reagent

mouse
CPa1D28

Kim et al., 2012 Plasmid

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Recombinant
DNA reagent

mouse
CP a1b2
R15A/Y79A

Edwards et al., 2015
Edwards et al., 2015

Plasmid

Recombinant
DNA
reagent

human
CARMIL1
CBR115
(964–1078)

Kim et al., 2012 Plasmid

Recombinant
DNA reagent

human
V-1

Edwards et al., 2015 Plasmid

Recombinant
DNA reagent

CARMIL1 Edwards et al., 2013
Edwards et al., 2013

Plasmid

Recombinant
DNA reagent

pGEX-6p-1-
mTwf1

Hilton et al., 2018
Hilton et al., 2018

Plasmid

Recombinant
DNA reagent

pGEX-6p-1
-mTwf2a

Hilton et al., 2018
Hilton et al., 2018

Plasmid

Recombinant
DNA reagent

pGEX-6p-1-
mTwf1-11

This paper Plasmid

Recombinant
DNA reagent

pEGFP-C1 Clontech Plasmid

Recombinant
DNA reagent

pCMV-M1 Addgene Cat: 23007 Plasmid

Recombinant
DNA reagent

pCMV-myc-mTwf1 This paper Plasmid

Recombinant
DNA reagent

pCMV-myc-mTwf1-11 This paper Plasmid

Sequence-
based
reagent

siTwf1 This paper siRNA; CGUUACCA
UUUCUUUCUGUUU

Sequence-
based
reagent

siCP1 This paper siRNA; CCUCAGCGA
UCUGAUCGACUU

Sequence-
based reagent

siCP2 This paper siRNA; GCACGC
UGAAUGAGAUCUA

Sequence-
based reagent

control RNAi
oligos
(Stealth RNAi)

Invitrogen Cat: 12935–200

Software,
algorithm

Fiji/Image J Schindelin et al., 2012

Software,
algorithm

NIS Elements
software -
Version 4.30.02

Nikon
Instruments

Software,
algorithm

GraphPad
Prism 6.0

GraphPad
Software

Software,
algorithm

Adobe Creative
Cloud Illustrator

Adobe Systems

Strain,
strain background
(E. coli)

BL21 (DE3)
pLysS

This paper

Strain,
strain background
(E. coli)

BL21 (DE3)
pRIL

This paper

Strain,
strain background
(E. coli)

BL21 (DE3)
pRARE

This paper
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Plasmids
Plasmids used for expressing the following proteins were previously described: chicken CPa1b1

(Soeno et al., 1998), chicken SNAP- CPa1b1 (Bombardier et al., 2015), mouse CPa1b2 (Kim et al.,

2012), mouse CPa1D28 (Kim et al., 2012), mouse CP a1b2 R15A/Y79A (Edwards et al., 2015),

human CARMIL1 CBR115 (964–1078) (Kim et al., 2012), human V-1 (Edwards et al., 2015). The

plasmid for over-expressing CARMIL1 in mammalian cells has been described (Edwards et al.,

2013). To generate plasmids for expressing mouse Twinfilin isoforms as glutathione-S-transferase

(GST)-fusions in E. coli, ORFs were PCR amplified from pHAT2-mTwf1 and pHAT2-mTwf2a kindly

provided by Pekka Lappalainen (Univ. of Helsinki) (Nevalainen et al., 2009), and subcloned into the

EcoRI and NotI sites of pGEX-6p-1, yielding pGEX-6p-1-mTwf1 and pGEX-6p-1-mTwf2a. pGEX-6p-

1-mTwf1-11 (K332A, R333A) was generated by site-directed mutagenesis of pGEX-6p-1-mTwf1. For

V-1 fluorescence experiments, we used a previously demonstrated strategy of removing two surface

cysteine residues to allow direct labeling on the single remaining cysteine (Fujiwara et al., 2014);

this was achieved by performing site-directed mutagenesis on wild type pGEX-GST-V-1 plasmid to

introduce two mutations (C45S, C83S). To generate an RNAi-refractive construct of mTwf1 for

expression in cultured cells, the ORF of mTwf1 was PCR amplified from pGEX-6p-1 and subcloned

into the HindIII and SacI sites of pEGFP-C1 (Clontech, Mountain View, CA). Then, site-directed muta-

genesis was used to introduce silent mutations at specific nucleotides of the ORF (703, 709, 711,

715), and the RNAi-refractive ORF was subcloned into the EcoRI and NotI sites of pCMV-M1, a gift

from Linda Wordeman (Stumpff et al., 2008) (Addgene plasmid # 23007), yielding pCMV-myc-

mTwf1. Site-directed mutagenesis was performed on pCMV-myc-mTwf1 to generate mutant pCMV-

myc-mTwf1-11 (K332A, R333A). All constructs were verified by DNA sequencing.

Protein expression and purification
Rabbit skeletal muscle actin (RMA) (Spudich and Watt, 1971), was purified from acetone powder

generated from frozen ground hind leg muscle tissue of young rabbits (PelFreez, Rogers, AR).

Lyophilized acetone powder stored at �80˚C was mechanically sheared in a coffee grinder, resus-

pended in G-buffer (5 mM Tris-HCl pH 7.5, 0.5 mM DTT, 0.2 mM ATP, 0.1 mM CaCl2), and then

cleared by centrifugation for 20 min at 50,000 � g. Actin was polymerized by the addition of 2 mM

MgCl2 and 50 mM NaCl and incubated overnight at 4˚C. F-actin was pelleted by centrifugation for

150 min at 361,000 � g, and the pellet solubilized by Dounce homogenization and dialyzed against

G-buffer for 48 hr at 4˚C. Monomeric actin was then precleared at 435,000 � g, and loaded onto a

S200 (16/60) gel filtration column (GE healthcare, Marlborough, MA) equilibrated in G-Buffer. Peak

fractions containing actin were stored at 4˚C. For labeling actin with biotin (Breitsprecher et al.,

2012) or Oregon Green (OG) (Kuhn and Pollard, 2005), the F-actin pellet described above was

Dounced and dialyzed against G-buffer lacking DTT. Monomeric actin was then polymerized by add-

ing an equal volume of 2X labeling buffer (50 mM Imidazole pH 7.5, 200 mM KCl, 0.3 mM ATP, 4

mM MgCl2). After 5 min, the actin was mixed with a 5-fold molar excess of NHS-XX-Biotin (Merck

KGaA, Darmstadt, Germany) or Oregon-Green-488 iodoacetamide (Invitrogen, Carlsbad, CA) resus-

pended in anhydrous DMF, and incubated in the dark for 15 hr at 4˚C. Labeled F-actin was pelleted

as above, and the pellet was rinsed briefly with G-buffer, then depolymerized by Dounce homogeni-

zation, and dialyzed against G-buffer for 48 hr at 4˚C. Labeled, monomeric actin was purified further

on an S200 (16/60) gel filtration column as above. Aliquots of biotin-conjugated actin were snap fro-

zen in liquid nitrogen and stored at �80˚C. OG-488-actin was dialyzed for 15 hr against G-buffer

with 50% glycerol and stored at �20˚C.
For bulk actin assembly assays, RMA was fluorescently labeled with pyrenyl-iodoacetamide on

cysteine 374 (Pollard and Cooper, 1984; Graziano et al., 2013). An RMA pellet stored at 4˚C (pre-

pared as described above) was dialyzed against pyrene buffer (25 mM Tris-HCl, pH 7.5, 100 mM

KCl, 0.02% NaN3, 0.3 mM ATP, and 2 mM MgSO4) for 3–4 hr and then diluted with pyrene buffer

to 1 mg/ml (23.8 mM). A sevenfold molar excess of pyrenyl-iodoacetamide was added, the actin solu-

tion was incubated overnight at 4˚C, and aggregates were cleared by low-speed centrifugation. The

supernatant (containing F-actin) was centrifuged for 3 hr at 4˚C at 45,000 rpm in a Ti70 rotor (Beck-

man Coulter, Indianapolis, IN) to pellet F-actin. The actin pellets were disrupted by Douncing, dia-

lyzed against G-buffer for 1–2 d, and gel filtered on a 16/60 S200 column. Peak fractions were

pooled, aliquoted, snap frozen, and stored at �80˚C.
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Mouse non-muscle CPa1b2 was purified as described (Graziano et al., 2014). Briefly, the expres-

sion vector (Soeno et al., 1998) was transformed into E. coli strain BL21 pLysS. Cells were grown in

LB to log phase, then expression was induced for 3 hr at 37˚C by addition of 0.4 mM isopropyl-b-D-

thiogalactopyranoside (IPTG). Cells were collected by centrifugation, washed with 25 ml water, and

resuspended in lysis buffer (20 mM Tris pH 8.0, 1 mM EDTA, 0.1% Triton X-100, protease inhibitors)

and lysed by lysozyme treatment and sonication. The cell lysate was clarified by centrifugation at

12,500 x g for 30 min at 4˚C. Supernatants were loaded onto a 1 ml Q-HiTrap column (GE Health-

care) and eluted with a 45 ml salt gradient (0–500 mM KCl) in 20 mM Tris, pH 8.0. Peak fractions

were pooled, concentrated using a centrifugal filter (Centiprep, MWCO 10 kDa; Millipore) to 3 ml,

and loaded onto a 26/60 Superdex 75 gel filtration column (GE Healthcare) equilibrated in 50 mM

KCl, 20 mM Tris, pH 8.0. Peak fractions were pooled and loaded onto a 5 ml Mono Q column (GE

Healthcare) and eluted with a 30 ml salt gradient (0–500 mM KCl) in 20 mM Tris, pH 8.0. Peak frac-

tions were pooled, dialyzed overnight at 4˚C into HEK buffer (20 mM HEPES, pH 7.4, 1 mM EDTA,

50 mM KCl), aliquoted, snap-frozen in liquid N2, and stored at �80˚C.
SNAP-649-CP (CPa1b1) was purified and labeled as described (Bombardier et al., 2015). SNAP-

CP was expressed E. coli strain BL21 pLysS. Cells were grown to log phase at 37˚C, and then expres-

sion was induced for 8 hr at 37˚C by addition of 0.4 mM isopropyl-b-D-thiogalactopyranoside (IPTG).

Cells were collected by centrifugation, and resuspended in 20 mM Tris pH 8.0, 1 mM EDTA, 0.1%

Triton X-100, protease inhibitors and lysed by lysozyme treatment and sonication. The cell lysate

was centrifuged for 80 min at 60,000 rpm, 4˚C in a Ti70 rotor (Beckman/Coulter, Fullerton, CA). The

supernatant was rotated with 0.75 ml of Ni2+-NTA-agarose beads (Qiagen, Valencia, CA). SNAP-CP

was fluorescently labelled using 9 mM (~4-fold excess) dye adduct for 2 hr at room temperature,

yielding SNAP-649-CP. To remove free dye, beads were washed three times with 20 mM imidazole

(pH 8.0), 1X PBS, 1 mM DTT, 200 mM NaCl. Labeled SNAP-649-CP was eluted with 0.5 ml of 300

mM imidazole pH 8.0, 50 mM Tris pH 8.0, 100 mM NaCl, 1 mM DTT, 5% glycerol, then purified by

gel filtration on a Superose six column (GE Healthcare) equilibrated in 20 mM Hepes (pH 7.5), 1 mM

EDTA, 150 mM KCl, 5% glycerol. Peak fractions were pooled, concentrated, aliquoted, snap-frozen

in liquid N2, and stored at �80˚C.
For stopped-flow kinetics, fluorescence anisotropy binding and HDX-MS experiments, His-

tagged-a1 and b2 subunits of mouse CP (pRSFDuet-1, pBJ 2041) were co-expressed in E. coli BL21

(DE3) pRIL and purified as described (Johnson et al., 2018). For CP lacking the b tentacle, a prema-

ture stop codon was introduced, so that the C-terminal residue of the mouse b2 subunit was L243

instead of C272 (pBJ 1891).

Twinfilin polypeptides were expressed as GST-fusions in E. coli strain BL21 pRARE. Cells were

grown to log phase at 37˚C, and then expression was induced for 16 hr at 18˚C by addition of 0.4

mM isopropyl-b-D-thiogalactopyranoside (IPTG). Cells were collected by centrifugation, washed with

25 ml water, and resuspended in 10 ml of PBS supplemented freshly with 0.5 mM dithiothreitol

(DTT), 1 mM phenylmethylsulphonyl fluoride (PMSF), and a standard mixture of protease inhibitors.

Cells were incubated with lysozyme (0.5 mg ml�1) on ice for 15 min and then sonicated. The cell

lysate was clarified by centrifugation at 12,500 g for 20 min and incubated at 4˚C (rotating) for at

least 2 hr with 0.5 ml glutathione–agarose beads (Sigma-Aldrich; St. Louis, MO). Beads were washed

three times in PBS supplemented with 1M NaCl and then washed two times in PBS. Twinfilin was

cleaved from GST by incubation with PreScission Protease (GE Healthcare; Marlborough, MA) over-

night at 4˚C (rotating). Beads were pelleted, and the supernatant was concentrated to 0.3 ml, and

then purified further by size-exclusion chromatography on a Superose12 column (GE Healthcare)

equilibrated in HEK buffer (20 mM Hepes pH 7.5, 1 mM EDTA, 50 mM KCl, 0.5 mM DTT). Peak frac-

tions were pooled, concentrated, aliquoted, snap-frozen in liquid N2, and stored at �80˚C.
CARMIL CBR115 and V-1 were purified from E. coli as above for mTwf1 proteins, except the GST

tag was removed from V-1 by digestion with thrombin instead of PreScission protease. To purify and

label V-1 (generating TAMRA-V-1) for fluorescence experiments, BL21 E. coli expressing pGEX-GST-

V-1 (C45S, C83S) was lysed in a Microfluidizer (Microfluidics Corp.; Westwood, MA). Fusion protein

was isolated on Glutathione Superflow Agarose (Thermo Fisher Scientific; Waltham, MA). The GST

tag was cleaved by digestion with bovine thrombin (MP Biomedicals; Santa Ana, CA) overnight at

4˚C, then separated from V-1 on a Sephacryl S-200 HR 16/60 column (GE Healthcare) equilibrated in

25 mM HEPES pH 7.0, 1 mM TCEP, 100 mM KCl, 1 mM NaN3. Residual GST was removed by re-

incubating peak fractions with Glutathione Superflow Agarose. Purified V-1 (C45S, C83S) was then
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labeled with tetramethylrhodamine (TAMRA)�5-maleimide (Invitrogen) overnight at 4˚C. Excess

TAMRA was removed by dialysis against 20 mM 3-(N-morpholino)propanesulfonic acid (MOPS) pH

7.2, 1.0 mM TCEP, 100 mM KCl, 1 mM NaN3. TAMRA-V-1 was stored at �70˚C
The mTwf1 tail peptides used for anisotropy were sourced as follows: N-terminal HiLyte488

labeled mTwf1 (H317-D350) was purchased from Anaspec (Fremont, CA); unlabeled CARMIL1 CPI

(G969-A1005), CARMIL1 CSI (M1019-M1037), mTwf1 (A305-D350) and mTwf1 (A305-D350, K325A),

as well as N-terminal TAMRA labeled mTwf1 (A305-D350), were purchased from WatsonBio Sciences

(Houston, TX).

Bulk pyrene F-actin assembly assays
Pyrene actin assembly assays were performed as previously described (Chesarone-Cataldo et al.,

2011), with slight modifications for monitoring uncapping. Reactions containing 2 mM G-actin (5%

pyrene labeled), 25 nM CapZ, and variable concentrations of mTwf1 were mixed to a volume of 52

ml followed by addition of 3 ml of initiation mix (40 mM MgCl2, 10 mM ATP, 1 M KCl). Fluorescence

was monitored at excitation and emission wavelengths of 365 and 407 nm, respectively, in a fluores-

cence spectrophotometer (Photon Technology International; Lawrenceville, NJ). Acquisition was

paused at 400 s, and 5 ml of CARMIL CBR (final concentration 250 nM) was spiked into the reaction,

mixed rapidly by pipetting, and measurement was resumed.

For pyrene actin elongation assays (as in Figure 4A and B), 5 ml of freshly mechanically sheared

F-actin (10 mM) was added to a mixture of the indicated proteins or control buffers, and then imme-

diately mixed with 0.5 mM monomeric actin (10% pyrene labeled) in 60 ml reactions and monitored in

a plate reader (Infinite M200; Tecan, Männedorf, Switzerland) at excitation and emission wave-

lengths of 365 and 407 nm, respectively.

Fluorescence anisotropy
The following anisotropy experiments were performed in HEK buffer (20 mM HEPES pH 7.5, 1 mM

EDTA, 50 mM KCl, 0.5 mM DTT). Reactions were incubated at room temperature for 15 min, and

anisotropy was determined by measuring polarized emission intensities at 525 nm when excited at

497 nm using a fluorescence spectrophotometer (Photon Technology International). To compare

mTwf1-tail binding to wild type and mutant CP (Figure 1B), HiLyte-488-mTwf1 tail peptide (100 nM)

was mixed with different concentrations of wild-type or mutant CP. To compare the abilities of full-

length wild type mTwf1 and mutant mTwf1-11 polypeptides to compete with labeled mTwf1-tail for

binding CP (Figure 1C), HiLyte-488-mTwf1 tail peptide (100 nM) was mixed with 1 mM CP and vari-

able concentrations of full-length mTwf1 polypeptides.

The following anisotropy experiments were performed in the indicated buffer, incubated at room

temperature for 2 min, and anisotropy was determined by measuring polarized emission intensities

at 525 nm when excited at 497 nm for HiLyte-488, or at 582 nm when excited at 552 nm for TAMRA.

To compare mTwf1 tail peptide binding to wild type CP and mutant CP(RY) (Figure 2B), HiLyte-488-

mTwf1 tail peptide (60 nM) was mixed with different concentrations of CP or CP(RY) in HEK buffer

containing 0.005% TWEEN 20. To compare the abilities of unlabeled wild type and mutant mTwf1

tail peptides to compete with labeled mTwf1 tail peptide for binding to CP (Figure 2C), TAMRA-

mTwf1 tail peptide (A305-D350, 40 nM) was mixed with 1 mM CP and varying concentrations of the

unlabeled tail peptides (mTwf1 A305-D350 or mTwf1 A305-D350, K325A) in 20 mM MOPS (pH 7.2),

1 mM TCEP, 100 mM KCl, 1 mM NaN3, 0.005% TWEEN 20. To test the abilities of different frag-

ments of CARMIL to compete with mTwf1 tail peptide for binding CP, HiLyte-488-mTwf1 tail pep-

tide (60 nM) was mixed with 240 nM CP and different concentrations of mouse CARMIL1 CBR (964–

1078), CPI (969–1005), or CSI (1019–1037) in HEK buffer containing 0.005% TWEEN20.

Stopped-flow fluorescence
For kinetic dissociation experiments (as in Figure 4D and E), an SX.18MV stopped flow instrument

with Pro-Data SX software V2.2.27 (Applied Photophysics Ltd., Leatherhead, UK) was used. 100 nM

TAMRA-V-1 was preincubated with 2 mM CPa1b2. At time zero, TAMRA-V-1:CP complex was rapidly

mixed via stopped-flow with an equal volume of a solution containing 5 mM unlabeled V-1, along

with varied concentrations of mTwf1 or mTwf1-11. Experiments were performed at 25˚C in HEK

buffer containing 0.005% TWEEN20. Excitation occurred at 505 nm, with emission detected using a
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570 + nm band-pass filter. All concentrations of mTwf were performed in replicates of 5–10, and

traces were averaged. Apparent dissociation rates were determined by fitting the averaged data (5

ms. - 120 s.) to a single exponential model using Pro-Data Viewer software V4.2.27 (Applied Photo-

physics Ltd.).

Total internal reflection fluorescence (TIRF) microscopy
For all experiments, 24 � 60 mm coverslips (Fisher Scientific; Pittsburg, PA) were cleaned by succes-

sive sonications as follows: 60 min in detergent, 20 min in 1 M KOH, 20 min in 1 M HCl min, and 60

min in ethanol. Coverslips were then washed extensively with ddH2O and dried in an N2-stream. A

solution of 80% ethanol pH 2.0, 2 mg/ml methoxy-poly (ethylene glycol)-silane and 2 mg/ml biotin-

poly (ethylene glycol)-silane (Laysan Bio Inc.; Arab, AL) was prepared and layered on the cleaned

coverslips (200 ml per coverslip). The coverslips were incubated for 16 hr at 70˚C. To assemble flow

cells, PEG-coated coverslips were rinsed extensively with ddH2O and dried in an N2-stream, then

attached to a prepared flow chamber (Ibidi; Martinsried, German) with double sided tape (2.5 cm x

2 mm x 120 mm) and five min epoxy resin. Flow cells were prepared immediately before use by

sequential incubations as follows: 3 min in HEK-BSA (20 mM Hepes pH 7.5, 1 mM EDTA, 50 mM

KCl, 1% BSA), 30 s in Streptavidin (0.1 mg/ml in PBS), a fast rinse in HEK-BSA, and then equilibration

in 1X TIRF buffer, pH 7.5 (10 mM imidazole, 50 mM KCl, 1 mM MgCl2, 1 mM EGTA, 0.2 mM ATP, 10

mM DTT, 15 mM glucose, 20 mg/ml catalase, 100 mg/ml glucose oxidase, and 0.5% methylcellulose

(4000 cP)). To initiate reactions, actin monomers (10% OG-labeled, 0.5% biotinylated) were diluted

to 1 mM in TIRF buffer, and immediately transferred to a flow chamber. After several minutes, once

the actin filaments reached an appropriate length (approximately 10 mm), the reaction mixture was

replaced by flow-in. For depolymerization experiments, the solution was replaced with TIRF buffer

lacking actin monomers, with or without Twinfilin and/or CP polypeptides. For uncapping experi-

ments, the solution was replaced with TIRF buffer lacking actin monomers, with 3 nM SNAP-649-CP

(100% labeled), and filaments were allowed to be capped for 3 min. Subsequently, the solution was

again replaced with TIRF buffer lacking actin monomers, with or without 50 nM CARMIL CBR and/or

variable concentration of Twinfilin polypeptides. Time-lapse TIRF microscopy was performed using a

Nikon-Ti200 inverted microscope equipped with a 150 mW Ar-Laser (Mellot Griot; Carlsbad, CA), a

60X TIRF-objective with a N.A. of 1.49 (Nikon Instruments Inc.; New York, NY), and an EMCCD cam-

era (Andor Ixon; Belfast, Northern Ireland). During recordings, optimal focus was maintained using

the perfect focus system (Nikon Instruments Inc). Images were captured every 5 s. The pixel size cor-

responded to 0.27 mm.

Filament depolymerization rates were determined by tracing filaments in ImageJ (http://rsbweb.

nih.gov/ij) and measuring the change in length of individual filaments for 15–20 min after flow-in, or

until filaments disappeared. Differences in fluorescence intensity along the length of the filament

provided fiduciary marks that allowed us to distinguish barbed- and pointed-ends. Filament uncap-

ping was measured by monitoring the as the amount of time that SNAP-649-CP puncta remained

associated with the barbed end of a filament after the addition of CARMIL to the reaction (with or

without Twinfilin) and expressing it as a fraction of filaments that remained capped at a given time

point. All results shown are data from at least two independent TIRF experiments.

Cell culture, transfection, and RNAi silencing
Mouse B16-F10 (CRL-6475), Neuro-2a (CCL-131), and NIH/3T3 (CRL-1658) cells obtained directly

from ATCC (American Type Culture Collection; Manassas, VA), where their identities were authenti-

cated by short tandem repeat DNA profiling and where they were tested for mycoplasma contami-

nation. Cells were used for experiments within one year. All cells were grown in DMEM (Gibco BRL

Life Technologies; Carlsbad, CA) supplemented with 10% fetal bovine serum (FBS; Sigma) and 200

mM L-glutamine (Thermo Fisher Scientific) at 37˚C and 5% CO2.

All cell culture experiments were carried out in 6-well dishes that were initially seeded with

100,000 cells. To knockdown Twinfilin-1 or Capping Protein cells were transfected 24 hr after seed-

ing with 30 pmol siRNA oligo using Lipofectamine RNAiMAX (Thermo Fisher Scientific) according to

the manufacturer’s instructions. RNAi oligos directed against the mouse Twinfilin-1 coding region

targeting (siTwf1) 5’- CGUUACCAUUUCUUUCUGUUU �3’; and against the Capping Protein b sub-

unit coding region targeting (siCP1) 5’- CCUCAGCGAUCUGAUCGACUU-3’, or (siCP2) 5’- GCACGC
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UGAAUGAGAUCUA-3’. Cells were transfected in parallel with control RNAi oligos (Invitrogen). For

over expression experiments cultured cells were transfected using Lipofectamine 3000 (Thermo

Fisher Scientific) according to the manufacturer’s instructions 24 hr after seeding. For CARMIL over

expression experiments, 5 mG of DNA was transfected, and for Twinfilin over expression experi-

ments 1 mG of DNA was transfected.

Antibodies
The rabbit anti-Twinfilin was a generous gift from Pekka Lappalainen (Univ. Helsinki) and used a dilu-

tion of 1:1000 for western blot detection and 1:100 in cultured cells. A mouse anti-Capping Protein

(Development Studies Hybridoma Bank; Iowa City, IA) was used at a dilution of 1:2000 for western

blot detection and 1:50 in cultured cells. Mouse anti-Flag (F3165, Sigma) and rabbit anti-Myc

(GTX29106, GeneTex; Irvine, CA) was used at 1:5000 for western blot detection and 1:500 in cul-

tured cells. Mouse and Rabbit horseradish peroxidase conjugated secondary antibodies (GE Health-

care) were used at a dilution of 1:10,000 for western blot detection. Secondary antibodies for

immunofluorescence (Alexa Fluor 488 or 647) and Alexa Fluor 568-phalloidin (ThermoFisher) were

used at a dilution of 1:1000.

Immunostaining cells
For cell-staining experiments, 48 hr post transfection, the cells were re-plated on 3 � 1�1 mm glass

coverslip (VWR International) that had been acid washed and coated with Laminin (Invitrogen) and

allowed to adhere for 3–6 hr. Cells were fixed for 15 min with 4% paraformaldehyde in PBS at room

temperature and then permeabilized for 15 min in permeabilization solution (0.5% Triton X-100 and

0.3 M glycine in PBS) at room temperature. Slips were then blocked in 3% BSA dissolved in PBST

(1X PBS and 0.1% TWEEN 20) for 1 hr at room temperature, then incubated in primary antibody (in

PBST) for 12 hr at 4˚C. Coverslips were then washed three times with 1X PBST and incubated with

secondary antibodies (in PBST) for 1 hr at room temperature. Slips were washed three times with

PBST and two times with PBS, and subsequently mounted on to slides with AquaMount (Thermo

Fisher Scientific). Cells were imaged on a Nikon i-E upright confocal microscope equipped with a

CSU-W1 spinning disk head (Yokogawa, Tokyo, Japan), 60x oil objective (NA 1.4; Nikon Instru-

ments), and an Ixon 897 Ultra-CCD camera (Andor Technology) controlled by NIS-Elements soft-

ware. Maximum intensity projections and raw fluorescence values were measured using Fiji.

Western blotting
To measure protein levels in cells after silencing and rescue, cells were harvest 48 hr after initial oligo

transfection and incubated for 10 min at 4˚C in RIPA buffer (50 mM Tris, pH 7.5, 150 mM NaCl, 1%

NP-40, 0.5% Na-deoxycholate, 0.1% SDS, 2 mM EDTA, 50 mM NaF). Samples were incubated on ice

for 30 min, vortexed every 10 min, then precleared by centrifugation at 20,800 x g for 15 min at 4˚C,
quantified by Bradford assay, and immunoblotted. Proteins were detected using a Pierce ECL West-

ern Blotting Substrate detection kit (Thermo Fisher Scientific). Bands were quantified using Image-

Lab (Biorad).

Hydrogen deuterium exchange mass spectrometry (HDX-MS)
HDX-MS was performed as described (Johnson et al., 2018). CP and Twf1 samples were buffer-

exchanged with 1X phosphate saline buffer (PBS), pH 7.4. HDX was initiated by diluting samples (25

mM, 2 mL) 10-fold with 1XPBS prepared in D2O buffer, or 1XPBS H2O buffer for samples measured

for no-deuterium control. At different time intervals (10, 30, 60, 120, 360, 900, 3600, and 14400 s),

the labeling reaction was quenched by rapidly decreasing the pH to 2.5 with 30 mL of quench buffer

(3 M urea, 1% trifluoroacetic acid, H2O) at 4˚C. The protein mixture was immediately injected into a

custom-built HDX sample-handling device that enabled digestion with a column containing immobi-

lized pepsin (2 mm �20 mm) at a flow rate of 100 mL/min in 0.1% formic acid. The resulting peptic

peptides were captured on a ZORBAX Eclipse XDB C8 column (2.1 mm �15 mm, Agilent) for desalt-

ing (3 min). The C8 column was then switched in-line with a Hypersil Gold C18 column (2.1 mm �50

mm, Thermo Fisher), and a linear gradient (4–40% acetonitrile, 0.1% formic acid, 50 mL/min flow

rate, over 5 min) was used to separate the peptides and direct them to an LTQ-FTICR mass spec-

trometer (Thermo Fisher) equipped with an electrospray ionization source. Valves, columns, and
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tubing for protein digestion and peptide separation were immersed in an ice-water bath to minimize

back-exchange.

To map the peptic peptides, the digest, in the absence of HDX, was submitted to accurate mass

analysis by LC–MS/MS with the LTQ-FTICR, and the peptic peptides identified using Mascot (Matrix

Science). For samples that underwent HDX, raw mass spectra and peptide sets were submitted to

HDX Workbench (Pascal et al., 2012) for calculation and data visualization in a fully automated fash-

ion. Peptides for each run were assessed based on relative representation and statistical validation

as implemented within HDX Workbench. Appropriate approach to determine statistical significance

between these data is by using Tukey’s multiple comparison test. A representative time point was

manually selected, replicate data points from multiple samples at this time point used to conduct a

one-way analysis of variance (ANOVA) the divergence between the means of the experiments were

assessed. In instances with large differences, Tukey method was used to determine statistical signifi-

cance if the resulting P value is less than 0.05. In the case where there was a comparison between

two experiments, a t-test was used. Only the top six peptides from each MS scan were used in the

final analysis. The extent of HDX at each time point was calculated by subtracting the centroid of the

isotopic distribution of the nondeuterated peptide from that of the deuterated peptide. The relative

deuterium uptake was plotted versus the labeling time to yield kinetic curves (%D vs time). Error

bars represent the results of t-tests between samples are shown above each time point to illustrate

statistical significance. For comparison between apo states and the complexes, differences in HDX

for all time points were calculated. Absolute differences in perturbation values larger than 5% D

were considered significant. HDX values at 15 min time point were mapped onto the protein three-

dimensional (3D) structure for data visualization. Peptide digestions were optimized under HDX

assay conditions, and the mass calculations included accommodation for back exchange with

solvent.
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