1,161 research outputs found
The Journal of the Center for Interdisciplinary Teaching and Learning
IMPACT: The Journal of the Center for Interdisciplinary Teaching & Learning is a peer-reviewed, biannual online journal that publishes scholarly and creative non-fiction essays about the theory, practice and assessment of interdisciplinary education. Impact is produced by the Center for Interdisciplinary Teaching & Learning at the College of General Studies, Boston University (www.bu.edu/cgs/citl).How do our students learn what it means to be a human being, with all the attendant responsibilities and joys? How do we learn to teach in a truly interdisciplinary manner? These are some of the questions that preoccupy this issue’s contributors
Quantifying tropical peatland dissolved organic carbon (DOC) using UV-visible spectroscopy
UV–visible spectroscopy has been shown to be a useful technique for determining dissolved organic carbon (DOC) concentrations. However, at present we are unaware of any studies in the literature that have investigated the suitability of this approach for tropical DOC water samples from any tropical peatlands, although some work has been performed in other tropical environments. We used water samples from two oil palm estates in Sarawak, Malaysia to: i) investigate the suitability of both single and two-wavelength proxies for tropical DOC determination; ii) develop a calibration dataset and set of parameters to calculate DOC concentrations indirectly; iii) provide tropical researchers with guidance on the best spectrophotometric approaches to use in future analyses of DOC. Both single and two-wavelength model approaches performed well with no one model significantly outperforming the other. The predictive ability of the models suggests that UV–visible spectroscopy is both a viable and low cost method for rapidly analyzing DOC in water samples immediately post-collection, which can be important when working at remote field sites with access to only basic laboratory facilities
Natural climate solutions for the United States
Limiting climate warming t
Video decision support tool for advance care planning in dementia: randomised controlled trial
Objective To evaluate the effect of a video decision support tool on the preferences for future medical care in older people if they develop advanced dementia, and the stability of those preferences after six weeks
Flowering Date of Taxonomic Families Predicts Phenological Sensitivity to Temperature: Implications for Forecasting the Effects of Climate Change on Unstudied Taxa
Premise of the study: Numerous long-term studies in seasonal habitats have tracked interannual variation in fi rst fl owering date (FFD) in relation to climate, documenting the effect of warming on the FFD of many species. Despite these efforts, long-term phenological observations are still lacking for many species. If we could forecast responses based on taxonomic affi nity, however, then we could leverage existing data to predict the climate-related phenological shifts of many taxa not yet studied; Methods: We examined phenological time series of 1226 species occurrences (1031 unique species in 119 families) across seven sites in North America and England to determine whether family membership (or family mean FFD) predicts the sensitivity of FFD to standardized interannual changes in temperature and precipitation during seasonal periods before fl owering and whether families differ signifi cantly in the direction of their phenological shifts; Key results: Patterns observed among species within and across sites are mirrored among family means across sites; earlyfl owering families advance their FFD in response to warming more than late-fl owering families. By contrast, we found no consistent relationships among taxa between mean FFD and sensitivity to precipitation as measured here; Conclusions: Family membership can be used to identify taxa of high and low sensitivity to temperature within the seasonal, temperate zone plant communities analyzed here. The high sensitivity of early-fl owering families (and the absence of earlyfl owering families not sensitive to temperature) may refl ect plasticity in fl owering time, which may be adaptive in environments where early-season conditions are highly variable among years
Accounting for albedo change to identify climate-positive tree cover restoration
Restoring tree cover changes albedo, which is the fraction of sunlight reflected from the Earth’s surface. In most locations, these changes in albedo offset or even negate the carbon removal benefits with the latter leading to global warming. Previous efforts to quantify the global climate mitigation benefit of restoring tree cover have not accounted robustly for albedo given a lack of spatially explicit data. Here we produce maps that show that carbon-only estimates may be up to 81% too high. While dryland and boreal settings have especially severe albedo offsets, it is possible to find places that provide net-positive climate mitigation benefits in all biomes. We further find that on-the-ground projects are concentrated in these more climate-positive locations, but that the majority still face at least a 20% albedo offset. Thus, strategically deploying restoration of tree cover for maximum climate benefit requires accounting for albedo change and we provide the tools to do so
Astro2020 Science White Paper: Triggered High-Priority Observations of Dynamic Solar System Phenomena
Unexpected dynamic phenomena have surprised solar system observers in the
past and have led to important discoveries about solar system workings.
Observations at the initial stages of these events provide crucial information
on the physical processes at work. We advocate for long-term/permanent programs
on ground-based and space-based telescopes of all sizes - including Extremely
Large Telescopes (ELTs) - to conduct observations of high-priority dynamic
phenomena, based on a predefined set of triggering conditions. These programs
will ensure that the best initial dataset of the triggering event are taken;
separate additional observing programs will be required to study the temporal
evolution of these phenomena. While not a comprehensive list, the following are
notional examples of phenomena that are rare, that cannot be anticipated, and
that provide high-impact advances to our understandings of planetary processes.
Examples include: new cryovolcanic eruptions or plumes on ocean worlds; impacts
on Jupiter, Saturn, Uranus, or Neptune; extreme eruptions on Io; convective
superstorms on Saturn, Uranus, or Neptune; collisions within the asteroid belt
or other small-body populations; discovery of an interstellar object passing
through our solar system (e.g. 'Oumuamua); and responses of planetary
atmospheres to major solar flares or coronal mass ejections.Comment: Astro2020 white pape
The Effect of Sample Handling on Cross Sectional HIV Incidence Testing Results
To determine if mishandling prior to testing would make a sample from a chronically infected subject appear recently infected when tested by cross-sectional HIV incidence assays.Serum samples from 31 subjects with chronic HIV infection were tested. Samples were subjected to different handling conditions, including incubation at 4 °C, 25 °C and 37 °C, for 1, 3, 7 or 15 days prior to testing. Samples were also subjected to 1,3, 7 and 15 freeze-thaw cycles prior to testing. Samples were tested using the BED capture enzyme immuno assay (BED-CEIA), Vironostika-less sensitive (V-LS), and an avidity assay using the Genetic Systems HIV-1/HIV-2 plus O EIA (avidity assay).Compared to the sample that was not subjected to any mishandling conditions, for the BED-CEIA, V-LS and avidity assay, there was no significant change in test results for samples incubated at 4 °C or 25 °C prior to testing. No impact on test results occurred after 15 freeze-thaw cycles. A decrease in assay results was observed when samples were held for 3 days or longer at 37 °C prior to testing.Samples can be subjected up to 15 freeze-thaw cycles without affecting the results the BED-CEIA, Vironostika-LS, or avidity assays. Storing samples at 4 °C or 25 °C for up to fifteen days prior to testing had no impact on test results. However, storing samples at 37°C for three or more days did affect results obtained with these assays
- …