1,888 research outputs found
The role of brassinosteroids in controlling plant height in poaceae : a genetic perspective
The most consistent phenotype of the brassinosteroid (BR)-related mutants is the dwarf habit. This observation has been reported in every species in which BR action has been studied through a mutational approach. On this basis, a significant role has been attributed to BRs in promoting plant growth. In this review, we summarize the work conducted in rice, maize, and barley for the genetic dissection of the pathway and the functional analysis of the genes involved. Similarities and differences detected in these species for the BR role in plant development are presented. BR promotes plant cell elongation through a complex signalling cascade that modulates the activities of growth-related genes and through the interaction with gibberellins (GAs), another class of important growth-promoting hormones. Evidence of BR\u2013GA cross-talk in controlling plant height has been collected, and mechanisms of interaction have been studied in detail in Arabidopsis thaliana and in rice (Oryza sativa). The complex picture emerging from the studies has highlighted points of interaction involving both metabolic and signalling pathways. Variations in plant stature influence plant performance in terms of stability and yield. The comprehension of BR\u2019s functional mechanisms will therefore be fundamental for future applications in plant-breeding programs
Co-production of synfuels and electricity from coal + biomass with zero net carbon emissions: An Illinois case study
Abstract Energy, carbon, and economic performance are estimated for facilities co-producing Fischer–Tropsch Liquid (FTL) fuels and electricity from a co-feed of biomass and coal in Illinois, with capture and storage of by-product CO 2 . The estimates include detailed models of supply systems for corn stover or mixed prairie grasses and of feedstock conversion facilities. The Illinois results are extrapolated to estimate the potential FTL production in 23 states
Dental unit water content and antibiotic resistance of Pseudomonas aeruginosa and Pseudomonas species: a case study
Background Many studies consider the contamination of dental unit waterlines (DUWLs), but few of them have studied the possible presence of antibiotic resistant Pseudomonas aeruginosa in the DUWLs. Aims Investigation of the presence of P. aeruginosa and Pseudomonas spp. strains in DUWLs and evaluation of their resistance to six antibiotics (ceftazidime, netilmicin, piperacillin/tazobactam, meropenem, levofloxacin, colistin sulfate) at a public dental clinic in Milan, Italy. Results Dental units were contaminated by P. aeruginosa with loads of 2-1,000 CFU/L and were mainly located on the mezzanine floor, with a range of 46-54%, while Pseudomonas spp. were primarily found on the first and second floors, ranging from 50 to 91%. P. aeruginosa was antibiotic resistant in 30% of the strains tested, andPseudomonas spp. in 31.8% . Cold water from controls was also contaminated by these microorganisms. Conclusion Monitoring antibiotic resistance in the water and adopting disinfection procedures on DUs are suggested within the Water Safety Plan
SPARC is a new myeloid-derived suppressor cell marker licensing suppressive activities
Myeloid-derived suppressor cells (MDSC) are well-known key negative regulators of the immune response during tumor growth, however scattered is the knowledge of their capacity to influence and adapt to the different tumor microenvironments and of the markers that identify those capacities. Here we show that the secreted protein acidic and rich in cysteine (SPARC) identifies in both human and mouse MDSC with immune suppressive capacity and pro-tumoral activities including the induction of epithelial-to-mesenchymal transition (EMT) and angiogenesis. In mice the genetic deletion of SPARC reduced MDSC immune suppression and reverted EMT. Sparc−/− MDSC were less suppressive overall and the granulocytic fraction was more prone to extrude neutrophil extracellular traps (NET). Surprisingly, arginase-I and NOS2, whose expression can be controlled by STAT3, were not down-regulated in Sparc−/− MDSC, although less suppressive than wild type (WT) counterpart. Flow cytometry analysis showed equal phosphorylation of STAT3 but reduced ROS production that was associated with reduced nuclear translocation of the NF-kB p50 subunit in Sparc−/− than WT MDSC. The limited p50 in nuclei reduce the formation of the immunosuppressive p50:p50 homodimers in favor of the p65:p50 inflammatory heterodimers. Supporting this hypothesis, the production of TNF by Sparc−/− MDSC was significantly higher than by WT MDSC. Although associated with tumor-induced chronic inflammation, TNF, if produced at high doses, becomes a key factor in mediating tumor rejection. Therefore, it is foreseeable that an unbalance in TNF production could skew MDSC toward an inflammatory, anti-tumor phenotype. Notably, TNF is also required for inflammation-driven NETosis. The high level of TNF in Sparc−/− MDSC might explain their increased spontaneous NET formation as that we detected both in vitro and in vivo, in association with signs of endothelial damage. We propose SPARC as a new potential marker of MDSC, in both human and mouse, with the additional feature of controlling MDSC suppressive activity while preventing an excessive inflammatory state through the control of NF-kB signaling pathway
The Seveso studies on early and long-term effects of dioxin exposure: a review.
The industrial accident that occurred in the town of Seveso, Italy, in 1976 exposed a large population to substantial amounts of relatively pure 2,3,7,8-tetrachlorodibenzo-p-dioxin. Extensive monitoring of soil levels and measurements of a limited number of human blood samples allowed classification of the exposed population into three categories, A (highest exposure), B (median exposure), and R (lowest exposure). Early health investigations including liver function, immune function, neurologic impairment, and reproductive effects yielded inconclusive results. Chloracne (nearly 200 cases with a definite exposure dependence) was the only effect established with certainty. Long-term studies were conducted using the large population living in the surrounding noncontaminated territory as reference. An excess mortality from cardiovascular and respiratory diseases was uncovered, possibly related to the psychosocial consequences of the accident in addition to the chemical contamination. An excess of diabetes cases was also found. Results of cancer incidence and mortality follow-up showed an increased occurrence of cancer of the gastrointestinal sites and of the lymphatic and hematopoietic tissue. Experimental and epidemiologic data as well as mechanistic knowledge support the hypothesis that the observed cancer excesses are associated with dioxin exposure. Results cannot be viewed as conclusive. The study is continuing in an attempt to overcome the existing limitations (few individual exposure data, short latency period, and small population size for certain cancer types) and to explore new research paths (e.g., differences in individual susceptibility)
MOLECULAR HOMOLOGY AMONG MEMBERS OF THE R-GENE FAMILY IN MAIZE
The R gene family determines the timing, distribution and amount of anthocyanin pigmentation in maize. This family comprises a set of regulatory genes, consisting of a cluster of several elements at the R locus, on chromosome 10, the Lc and Sn gene lying about two units R distal and B on chromosome 2. Each gene determines a tissue-specific pigmentation of different parts of the seed and plant. The proposed duplicated function of R, Sn, Lc and B loci is reflected in cDNA sequence similarity. In this paper an extensive analysis of the predicted proteins of the R, Sn, Lc and B genes together with a search for putative sites of post-translational modification is reported. A comparison with the PROSITE database discloses several N-glycosylation and phosphorylation sites, as well as the basic Helix-Loop-Helix (HLH) domain of transcriptional activators. Sn, Lc, and R-S show a high conservation of these sites, while B is more divergent. Analysis of the 5' leader of mRNA sequences discloses the presence of five ATG triplets with two upstream open reading frames (uORFs) of 38 and 15 amino acids and a loop structure indicating a possible mechanism of control at the translational level. It is conceivable that possible mechanisms acting at the translational and post-translational level could modulate the expression and the activation of these transcription factors. Northern analysis of various tissues of different R alleles highlights a strict correlation between pigment accumulation in different tissues and the expression of the regulatory and structural genes suggesting that the pattern of pigmentation relies on a mechanism of differential expression of the members of the R family. Analysis of the Sn promoter discloses the presence of several sequences resembling binding sites of known transcription factors (as GAGA and GT) that might be responsible for the spatial and light-induced expression of this gene. Two regions include a short sequence homologous to the consensus binding site of the B-HLH domain suggesting a self-regulatory control of the Sn gene
Characterization of the biogenic volatile organic compounds (BVOCs) and analysis of the PR1 molecular marker in Vitis vinifera L. inoculated with the nematode Xiphinema index
Upon pathogen attack, plants very quickly undergo rather complex physico-chemical changes, such as the production of new chemicals or alterations in membrane and cell wall properties, to reduce disease damages. An underestimated threat is represented by root parasitic nematodes. In Vitis vinifera L., the nematode Xiphinema index is the unique vector of Grapevine fanleaf virus, responsible for fanleaf degeneration, one of the most widespread and economically damaging diseases worldwide. The aim of this study was to investigate changes in the emission of biogenic volatile organic compounds (BVOCs) in grapevines attacked by X. index. BVOCs play a role in plant defensive mechanisms and are synthetized in response to biotic damages. In our study, the BVOC profile was altered by the nematode feeding process. We found a decrease in \u3b2-ocimene and limonene monoterpene emissions, as well as an increase in \u3b1-farnesene and \u3b1-bergamotene sesquiterpene emissions in nematode-treated plants. Moreover, we evaluated the PR1 gene expression. The transcript level of PR1 gene was higher in the nematode-wounded roots, while in the leaf tissues it showed a lower expression compared to control grapevines
- …