185 research outputs found

    Entropy and scintillation analysis of acoustical beam propagation through ocean internal waves

    Get PDF
    Author Posting. © Acoustical Society of America, 2005. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 117 (2005): 1611-1623, doi:10.1121/1.1854571.Parabolic equation numerical simulations of waveguide acoustical beam propagation in an ocean of Garrett–Munk internal waves are used to examine the range evolution of beam properties such as beamwidth (both spectral and spatial), Shannon entropy, and scintillation index, as a function of beam angle. Simulations are carried out at 250- and 125-Hz acoustic frequencies. The ray trajectories associated with these beams are predominantly chaotic or exponentially sensitive to initial conditions and/or medium perturbations. At long range near saturation, the finite-frequency beams show a constant rate of change of Shannon entropy with range, independent of acoustic frequency. This full-wave rate of entropy is of the same order of magnitude as the average rate of entropy for the ray trajectories associated with this beam. Finite-range Lyapunov exponents provide the estimates of ray entropy rate or Kolmogorov–Siani entropy. The correspondence between full-wave and ray entropies suggests a full-wave manifestation of ray chaos, but only once statistical saturation is obtained. In spite of this correspondence, the simulated acoustical beams expand diffusively not exponentially (or explosively)

    Quantum Entanglement of Electromagnetic Fields in Non-inertial Reference Frames

    Get PDF
    Recently relativistic quantum information has received considerable attention due to its theoretical importance and practical application. Especially, quantum entanglement in non-inertial reference frames has been studied for scalar and Dirac fields. As a further step along this line, we here shall investigate quantum entanglement of electromagnetic fields in non-inertial reference frames. In particular, the entanglement of photon helicity entangled state is extensively analyzed. Interestingly, the resultant logarithmic negativity and mutual information remain the same as those for inertial reference frames, which is completely different from that previously obtained for the particle number entangled state.Comment: more explanatory material added in the introduction, version to appear in Journal of Physics

    Molecular cloning of mouse placental lactogen cDNA.

    Full text link

    Background independence in a nutshell

    Full text link
    We study how physical information can be extracted from a background independent quantum system. We use an extremely simple `minimalist' system that models a finite region of 3d euclidean quantum spacetime with a single equilateral tetrahedron. We show that the physical information can be expressed as a boundary amplitude. We illustrate how the notions of "evolution" in a boundary proper-time and "vacuum" can be extracted from the background independent dynamics.Comment: 19 pages, 19 figure

    A modified beam-to-earth transformation to measure short-wavelength internal waves with an acoustic Doppler current profiler

    Get PDF
    Author Posting. © American Meteorological Society 2005. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Atmospheric and Oceanic Technology 22 (2005): 583–591, doi:10.1175/JTECH1731.1.The algorithm used to transform velocity signals from beam coordinates to earth coordinates in an acoustic Doppler current profiler (ADCP) relies on the assumption that the currents are uniform over the horizontal distance separating the beams. This condition may be violated by (nonlinear) internal waves, which can have wavelengths as small as 100–200 m. In this case, the standard algorithm combines velocities measured at different phases of a wave and produces horizontal velocities that increasingly differ from true velocities with distance from the ADCP. Observations made in Massachusetts Bay show that currents measured with a bottom-mounted upward-looking ADCP during periods when short-wavelength internal waves are present differ significantly from currents measured by point current meters, except very close to the instrument. These periods are flagged with high error velocities by the standard ADCP algorithm. In this paper measurements from the four spatially diverging beams and the backscatter intensity signal are used to calculate the propagation direction and celerity of the internal waves. Once this information is known, a modified beam-to-earth transformation that combines appropriately lagged beam measurements can be used to obtain current estimates in earth coordinates that compare well with pointwise measurements.A. Scotti was partially supported by ONR Grants N00014-03-1-0553 and N00014-01-1- 0172, B. Butman and P. Alexander by the U.S. Geological Survey, and R. Beardsley by the WHOI Smith Chair and ONR Grant N00014-98-1-0210. S. Anderson received partial support from ONR (Grant N00014-97- 1-0158). The Massachusetts Bay Internal Wave Experiment was jointly supported by ONR and USGS

    Minimising school disruption under high incidence conditions due to the Omicron variant in France, Switzerland, Italy, in January 2022.

    Get PDF
    BackgroundAs record cases of Omicron variant were registered in Europe in early 2022, schools remained a vulnerable setting undergoing large disruption.AimThrough mathematical modelling, we compared school protocols of reactive screening, regular screening, and reactive class closure implemented in France, in Baselland (Switzerland), and in Italy, respectively, and assessed them in terms of case prevention, testing resource demand, and schooldays lost.MethodsWe used a stochastic agent-based model of SARS-CoV-2 transmission in schools accounting for within- and across-class contacts from empirical contact data. We parameterised it to the Omicron BA.1 variant to reproduce the French Omicron wave in January 2022. We simulated the three protocols to assess their costs and effectiveness for varying peak incidence rates in the range experienced by European countries.ResultsWe estimated that at the high incidence rates registered in France during the Omicron BA.1 wave in January 2022, the reactive screening protocol applied in France required higher test resources compared with the weekly screening applied in Baselland (0.50 vs 0.45 tests per student-week), but achieved considerably lower control (8% vs 21% reduction of peak incidence). The reactive class closure implemented in Italy was predicted to be very costly, leading to > 20% student-days lost.ConclusionsAt high incidence conditions, reactive screening protocols generate a large and unplanned demand in testing resources, for marginal control of school transmissions. Comparable or lower resources could be more efficiently used through weekly screening. Our findings can help define incidence levels triggering school protocols and optimise their cost-effectiveness

    The political economy of ‘lap dancing’: contested careers and women’s work in the stripping industry

    Get PDF
    The visibility of striptease (‘lap dancing’) as a workplace and site of consumption has grown significantly over the past fifteen years in the United Kingdom. This article draws on the first large scale study of stripping work in the UK, exploring original empirical data to examine why women continue to seek work in an industry that is profoundly precarious and often highly exploitative. It suggests that rather than either a ‘career’ or a ‘dead end’ job, many women use lap dancing strategically to create alternative futures of work, employment and education. It is argued that precarious forms of employment such as lap dancing can be instrumentalised through agentic strategies by some workers, in order to achieve longer term security and to develop opportunities outside the sex industry. As such, it is averred that engagement in the industry should instead be understood in a wider political economy of work and employment and the social wage

    Simple model for quantum general relativity from loop quantum gravity

    Full text link
    New progress in loop gravity has lead to a simple model of `general-covariant quantum field theory'. I sum up the definition of the model in self-contained form, in terms accessible to those outside the subfield. I emphasize its formulation as a generalized topological quantum field theory with an infinite number of degrees of freedom, and its relation to lattice theory. I list the indications supporting the conjecture that the model is related to general relativity and UV finite.Comment: 8 pages, 3 figure

    A new look at loop quantum gravity

    Full text link
    I describe a possible perspective on the current state of loop quantum gravity, at the light of the developments of the last years. I point out that a theory is now available, having a well-defined background-independent kinematics and a dynamics allowing transition amplitudes to be computed explicitly in different regimes. I underline the fact that the dynamics can be given in terms of a simple vertex function, largely determined by locality, diffeomorphism invariance and local Lorentz invariance. I emphasize the importance of approximations. I list open problems.Comment: 15 pages, 5 figure
    • 

    corecore