1,204 research outputs found

    Micro-Scale Flapping Wings for the Advancement of Flying MEMS

    Get PDF
    This research effort presents conceptual micro scale air vehicles whose total dimensions are less than one millimeter. The initial effort was to advance the understanding of micro aerial vehicles at sub-millimeter dimensions by fabricating and testing micro scale flapping wings. Fabrication was accomplished using a surface micromachining process called PolyMUMPs™. Both rigid mechanical structures and biomimetic devices were designed and fabricated as part of this effort. The rigid mechanical structures focused on out of plane deflections with solid connections and assembling a multiple hinge wing structure through the aid of residual stress. These devices were actuated by double hot arm thermal actuators. The biomimetic structures derived from three different insect wings to include; the dragonfly, house fly, and butterfly were selected based off of an attribute that each insect possesses in nature. The dragonfly was chosen for its high maneuverability and hovering capabilities. The house fly wing was chosen because of its durability and the butterfly wing was chosen because of its flexibility. The fabricated wings utilize a thermal bimorph structure consisting of polysilicon and gold which allows device actuation through joule heating. The released micro wings had an initial upward deflection due to residual stress between the gold and polysilicon material layers. Joule heating, from an applied bias, forces the wing to deflect downward due to the coefficient of thermal expansion mismatch between the material layers. Each fabricated bio-wing structure was tested for deflection range as well as operating frequency. From the experimental testing of the micro scale flapping bio-wings, aerodynamic values were calculated to include; aspect ratio, reduced frequency in a hover, Reynolds number of a hovering device, drag force, and gravitational force. The research verified insect based wings on the micro scale are capable of producing the desired flapping motion

    The present and future of serum diagnostic tests for testicular germ cell tumours

    Get PDF
    Testicular germ cell tumours (GCTs) are the most common malignancy occurring in young adult men and the incidence of these tumours is increasing. Current research priorities in this field include improving overall survival for patients classified as being 'poor-risk' and reducing late effects of treatment for patients classified as 'good-risk'. Testicular GCTs are broadly classified into seminomas and nonseminomatous GCTs (NSGCTs). The conventional serum protein tumour markers α-fetoprotein (AFP), human chorionic gonadotrophin (hCG) and lactate dehydrogenase (LDH) show some utility in the management of testicular malignant GCT. However, AFP and hCG display limited sensitivity and specificity, being indicative of yolk sac tumour (AFP) and choriocarcinoma or syncytiotrophoblast (hCG) subtypes. Furthermore, LDH is a very nonspecific biomarker. Consequently, seminomas and NSGCTs comprising a pure embryonal carcinoma subtype are generally negative for these conventional markers. As a result, novel universal biomarkers for testicular malignant GCTs are required. MicroRNAs are short, non-protein-coding RNAs that show much general promise as biomarkers. MicroRNAs from two 'clusters', miR-371–373 and miR-302–367, are overexpressed in all malignant GCTs, regardless of age (adult or paediatric), site (gonadal or extragonadal) and subtype (seminomas, yolk sac tumours or embryonal carcinomas). A panel of four circulating microRNAs from these two clusters (miR-371a-3p, miR-372-3p, miR-373-3p and miR-367-3p) is highly sensitive and specific for the diagnosis of malignant GCT, including seminoma and embryonal carcinoma. In the future, circulating microRNAs might be useful in diagnosis, disease monitoring and prognostication of malignant testicular GCTs, which might also reduce reliance on serial CT scanning. For translation into clinical practice, important practical considerations now need addressing.The authors would like to acknowledge grant funding from CwCUK/GOSHCC (M.J.M. N.C. grant W1058), SPARKS (M.J.M. N.C. grant 11CAM01), CRUK (N.C. grant A13080) MRC (M.J.M. grant MC_EX_G0800464) and National Health Service funding to the Royal Marsden/Institute of Cancer Research National Institute for Health Research Biomedical Research Centre for Cancer (R.A.H.). The authors also thank the Max Williamson Fund, the Josh Carrick Foundation and The Perse Preparatory School, Cambridge for support.This is the author accepted manuscript. The final version is available fromNature Publishing Group via https://doi.org/10.1038/nrurol.2016.17

    INTEGRATING BIOTELEMETRY AND HYDROACOUSTIC DATA TO ESTIMATE THE ABUNDANCE OF THE FALL SPAWNING RUN OF ATLANTIC STURGEON IN THE MARSHYHOPE CREEK-NANTICOKE RIVER SYSTEM

    Get PDF
    Once thought to be extirpated, fall spawning runs of Atlantic sturgeon (Acipenser oxyrinchus) have been rediscovered in the Nanticoke River-Marshyhope Creek system in Maryland and are currently listed as an endangered species within the Chesapeake Distinct Population Segment. Previously tagged adults predominate survey captures, suggesting a very small population size. A key challenge is to estimate abundance for such a small population distributed between presumed spawning reaches of the connected Nanticoke River and Marshyhope Creek. This study leverages data collected from a dense telemetry receiver array and multiple side-scan sonar surveys conducted from August to October to estimate reach specific and superpopulation abundances in 2020 and 2021. I modified an approach that integrates mobile hydroacoustic data with biotelemetry, here applying for stationary telemetry receiver data. In 2020 and 2021, I estimated that 36 (95% confidence interval: 25-55) and 74 (95% confidence interval: 52-109) sturgeon used the Nanticoke River-Marshyhope Creek system, respectively. The higher estimate in 2021 coincided with higher sonar count data and low and stable river flows and temperature. Still, this large difference has no clear cause. Overall, run estimates support previous hypotheses that the Nanticoke system supports a very small population and that both the Marshyhope Creek and upper Nanticoke River serve as important areas for spawning activity. Going forward, enhanced sampling of the Upper Nanticoke River and targeted analysis assessing the relationship between phenology and environmental conditions would further develop our understanding of interannual changes in spawning run abundance

    Large-scale Spatiotemporal Spike Patterning Consistent with Wave Propagation in Motor Cortex

    Get PDF
    Aggregate signals in cortex are known to be spatiotemporally organized as propagating waves across the cortical surface, but it remains unclear whether the same is true for spiking activity in individual neurons. Furthermore, the functional interactions between cortical neurons are well documented but their spatial arrangement on the cortical surface has been largely ignored. Here we use a functional network analysis to demonstrate that a subset of motor cortical neurons in non-human primates spatially coordinate their spiking activity in a manner that closely matches wave propagation measured in the beta oscillatory band of the local field potential. We also demonstrate that sequential spiking of pairs of neuron contains task-relevant information that peaks when the neurons are spatially oriented along the wave axis. We hypothesize that the spatial anisotropy of spike patterning may reflect the underlying organization of motor cortex and may be a general property shared by other cortical areas

    Depletion of polycistronic transcripts using short interfering RNAs: cDNA synthesis method affects levels of non-targeted genes determined by quantitative PCR.

    Get PDF
    BACKGROUND: Short interfering RNAs (siRNAs) are often used to deplete viral polycistronic transcripts, such as those encoded by human papillomavirus (HPV). There are conflicting data in the literature concerning how siRNAs targeting one HPV gene can affect levels of other genes in the polycistronic transcripts. We hypothesised that the conflict might be partly explained by the method of cDNA synthesis used prior to transcript quantification. FINDINGS: We treated HPV16-positive cervical keratinocytes with siRNAs targeting the HPV16 E7 gene and used quantitative PCR to compare transcript levels of E7 with those of E6 and E2, viral genes located upstream and downstream of the target site respectively. We compared our findings from cDNA generated using oligo-dT primers alone with those from cDNA generated using a combination of random hexamer and oligo-dT primers. Our data show that when polycistronic transcripts are targeted by siRNAs, there is a period when untranslatable cleaved mRNA upstream of the siRNA binding site remains detectable by PCR, if cDNA is generated using random hexamer primers. Such false indications of mRNA abundance are avoided using oligo-dT primers. The period corresponds to the time taken for siRNA activity and degradation of the cleaved transcripts. Genes downstream of the siRNA binding site are detectable during this interval, regardless of how the cDNA is generated. CONCLUSIONS: These data emphasise the importance of the cDNA synthesis method used when measuring transcript abundance following siRNA depletion of polycistronic transcripts. They provide a partial explanation for erroneous reports suggesting that siRNAs targeting HPV E7 can have gene-specific effects.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are

    Effects of Growth Media pH and Reaction Water Activity on the Conversion of Acetophenone to (S)-1-Phenylethanol by \u3cem\u3eSaccharomyces cerevisiae\u3c/em\u3e Immobilized on Celite 635 and in Calcium Alginate

    Get PDF
    Biologically catalyzed reactions often produce enantiomers of the product; however, only one configuration is desired. Reaction conditions are known to affect enantiomer ratios and reaction kinetics, but little is known regarding the effect of processing conditions on whole-cell biocatalysis. Saccharomyces cerevisiae cells were grown in batch on glucose at pH = 4, 5, and 7, and then immobilized on Celite beads or in calcium alginate beads and used as the biocatalyst for the conversion of acetophenone in hexane to (S)-1-phenylethanol at water activities of 0.37, 0.61, and 0.80. S. cerevisiae was used as a model microorganism for the whole-cell catalyzed reaction. The initial reaction rate (IRR) and the final (S)-1-phenylethanol concentration were quantified for each treatment. The highest IRR value (94.9 µmol/h) and the highest final concentration of (S)-1-phenylethanol (17.8 mM) were observed on Celite-immobilized cells grown at pH 5 or 7, with the main effect of growth medium pH highly statistically significant. The main effect of water activity and the interactions of the two were not statistically significant (a = 0.05). The cells immobilized in calcium alginate beads favored a water activity of 0.61, resulting in an IRR of 916.2 µmol/h/g dcw, averaged over pH. The highest final concentration of (S)-1-phenylethanol (4.8 mM) was achieved with cells grown at pH 5 or 7. Calcium alginate beads gave the highest initial reaction rate with a growth pH of 7 and a water activity of 0.61. However, pH of 5 and water activity of 0.61 resulted in the highest final concentration of (S)-1-phenylethanol

    SOST Inhibits Prostate Cancer Invasion.

    Get PDF
    Inhibitors of Wnt signaling have been shown to be involved in prostate cancer (PC) metastasis; however the role of Sclerostin (Sost) has not yet been explored. Here we show that elevated Wnt signaling derived from Sost deficient osteoblasts promotes PC invasion, while rhSOST has an inhibitory effect. In contrast, rhDKK1 promotes PC elongation and filopodia formation, morphological changes characteristic of an invasive phenotype. Furthermore, rhDKK1 was found to activate canonical Wnt signaling in PC3 cells, suggesting that SOST and DKK1 have opposing roles on Wnt signaling in this context. Gene expression analysis of PC3 cells co-cultured with OBs exhibiting varying amounts of Wnt signaling identified CRIM1 as one of the transcripts upregulated under highly invasive conditions. We found CRIM1 overexpression to also promote cell-invasion. These findings suggest that bone-derived Wnt signaling may enhance PC tropism by promoting CRIM1 expression and facilitating cancer cell invasion and adhesion to bone. We concluded that SOST and DKK1 have opposing effects on PC3 cell invasion and that bone-derived Wnt signaling positively contributes to the invasive phenotypes of PC3 cells by activating CRIM1 expression and facilitating PC-OB physical interaction. As such, we investigated the effects of high concentrations of SOST in vivo. We found that PC3-cells overexpressing SOST injected via the tail vein in NSG mice did not readily metastasize, and those injected intrafemorally had significantly reduced osteolysis, suggesting that targeting the molecular bone environment may influence bone metastatic prognosis in clinical settings

    Virus transcript levels and cell growth rates after naturally occurring HPV16 integration events in basal cervical keratinocytes.

    Get PDF
    Cervical carcinogenesis is characterized by a clonal selection process in which the high-risk human papillomavirus (HRHPV) genome usually changes from the extra-chromosomal (episomal) state seen in productive infections to DNA that is integrated into host chromosomes. However, it is not clear whether all HRHPV integration events provide cells with a selective growth advantage compared with the episome-containing cells from which they originate. It is also unclear whether selection of cells containing a particular integrant from a mixed population simply reflects the highest levels of virus oncogene expression or has additional determinants. These early events in cervical carcinogenesis cannot readily be addressed by cross-sectional studies of clinical samples. We used the W12 model system to generate a panel of cervical squamous cell clones that were derived from an identical background under non-competitive conditions and differed only by the genomic site of HPV16 integration. Compared with the 'baseline' episome-containing cells from which they were isolated, only 9/17 clones (53%) showed significantly greater growth rates and only 7/17 (41%) showed significantly greater expression of the major virus oncogenes E7/E6. There were significant variations in levels of HPV16 transcription per DNA template, changes that were associated with histone modifications in the integrated virus chromatin. Cell growth rates showed only weak and non-significant associations with protein and mRNA levels for E7, E6, and the mean E7/E6 values. We conclude that HPV16 integration in basal cervical cells does not necessarily lead to increased levels of virus oncogenes, or to a competitive growth advantage, when compared with the initiating episome-containing cells
    • …
    corecore