75,586 research outputs found
An Experimental Evaluation of Oil Pumping Rings
The design and construction of a reciprocating test vehicle to be used in evaluating hydrodynamic oil pumping rings are discussed. In addition, experimental test data are presented for three pumping ring designs that were constructed from Tin-Based Babbitt (SAE 11), Bearing Bronze (SAE 660), and Mechanical Carbon Graphite (Union Carbide Grade CNF-J). Data of pumped flow rate versus delivered pressure, as well as friction loss, are reported for the following conditions: frequencies of 10, 35 and 45 Hz; strokes of 25.4 mm (1.00 in.), 38.1 mm (1.50 in.) and 50.8 mm (2.00 in.) oil inlet temperature of 49 degrees (120 degrees); and pumping ring close-in pressures of 10.3 MPa (1500 lb/square inch. A 20W40 automotive oil was used for all tests. The maximum delivered pressure was 11 MPa (1600 lb/square inch. An analysis of hydrodynamic oil pumping rings was performed and the results of the analysis were compared to measured test data
Charge Transfer in Partition Theory
The recently proposed Partition Theory (PT) [J.Phys.Chem.A 111, 2229 (2007)]
is illustrated on a simple one-dimensional model of a heteronuclear diatomic
molecule. It is shown that a sharp definition for the charge of molecular
fragments emerges from PT, and that the ensuing population analysis can be used
to study how charge redistributes during dissociation and the implications of
that redistribution for the dipole moment. Interpreting small differences
between the isolated parts' ionization potentials as due to environmental
inhomogeneities, we gain insight into how electron localization takes place in
H2+ as the molecule dissociates. Furthermore, by studying the preservation of
the shapes of the parts as different parameters of the model are varied, we
address the issue of transferability of the parts. We find good transferability
within the chemically meaningful parameter regime, raising hopes that PT will
prove useful in chemical applications.Comment: 12 pages, 16 figure
Automatic Classification of Text Databases through Query Probing
Many text databases on the web are "hidden" behind search interfaces, and
their documents are only accessible through querying. Search engines typically
ignore the contents of such search-only databases. Recently, Yahoo-like
directories have started to manually organize these databases into categories
that users can browse to find these valuable resources. We propose a novel
strategy to automate the classification of search-only text databases. Our
technique starts by training a rule-based document classifier, and then uses
the classifier's rules to generate probing queries. The queries are sent to the
text databases, which are then classified based on the number of matches that
they produce for each query. We report some initial exploratory experiments
that show that our approach is promising to automatically characterize the
contents of text databases accessible on the web.Comment: 7 pages, 1 figur
The instability of stellar structures intermediate between white dwarfs and neutron stars
Instability of stellar structures intermediate between dwarfs and neutron star
Sommerfeld's image method in the calculation of van der Waals forces
We show how the image method can be used together with a recent method
developed by C. Eberlein and R. Zietal to obtain the dispersive van der Waals
interaction between an atom and a perfectly conducting surface of arbitrary
shape. We discuss in detail the case of an atom and a semi- infinite conducting
plane. In order to employ the above procedure to this problem it is necessary
to use the ingenious image method introduced by Sommerfeld more than one
century ago, which is a generalization of the standard procedure. Finally, we
briefly discuss other interesting situations that can also be treated by the
joint use of Sommerfeld's image technique and Eberlein-Zietal method.Comment: To appear in the proceedings of Conference on Quantum Field Theory
under the Influence of External Conditions (QFEXT11
A slowly rotating perfect fluid body in an ambient vacuum
A global model of a slowly rotating perfect fluid ball in general relativity
is presented. To second order in the rotation parameter, the junction surface
is an ellipsoidal cylinder. The interior is given by a limiting case of the
Wahlquist solution, and the vacuum region is not asymptotically flat. The
impossibility of joining an asymptotically flat vacuum region has been shown in
a preceding work.Comment: 7 pages, published versio
Three results on representations of Mackey Lie algebras
I. Penkov and V. Serganova have recently introduced, for any non-degenerate
pairing of vector spaces, the Lie algebra
consisting of endomorphisms of whose
duals preserve . In their work, the category
of -modules which are finite
length subquotients of the tensor algebra is singled out and
studied. In this note we solve three problems posed by these authors concerning
the categories . Denoting by
the category with the same objects as
but regarded as -modules, we first
show that when and are paired by dual bases, the functor
taking a module to
its largest weight submodule with respect to a sufficiently nice Cartan
subalgebra of is a tensor equivalence. Secondly, we prove that
when and are countable-dimensional, the objects of
have finite length as -modules.
Finally, under the same hypotheses, we compute the socle filtration of a simple
object in as a -module.Comment: 9 page
A novel method for the injection and manipulation of magnetic charge states in nanostructures
Realising the promise of next-generation magnetic nanotechnologies is
contingent on the development of novel methods for controlling magnetic states
at the nanoscale. There is currently demand for simple and flexible techniques
to access exotic magnetisation states without convoluted fabrication and
application processes. 360 degree domain walls (metastable twists in
magnetisation separating two domains with parallel magnetisation) are one such
state, which is currently of great interest in data storage and magnonics.
Here, we demonstrate a straightforward and powerful process whereby a moving
magnetic charge, provided experimentally by a magnetic force microscope tip,
can write and manipulate magnetic charge states in ferromagnetic nanowires. The
method is applicable to a wide range of nanowire architectures with
considerable benefits over existing techniques. We confirm the method's
efficacy via the injection and spatial manipulation of 360 degree domain walls
in Py and Co nanowires. Experimental results are supported by micromagnetic
simulations of the tip-nanowire interaction.Comment: in Scientific Reports (2016
Local and global statistical distances are equivalent on pure states
The statistical distance between pure quantum states is obtained by finding a
measurement that is optimal in a sense defined by Wootters. As such, one may
expect that the statistical distance will turn out to be different if the set
of possible measurements is restricted in some way. It nonetheless turns out
that if the restriction is to local operations and classical communication
(LOCC) on any multipartite system, then the statistical distance is the same as
it is without restriction, being equal to the angle between the states in
Hilbert space.Comment: 5 pages, comments welcom
- …