2,276 research outputs found

    The Effect of High Dose Total Body Irradiation on ACTH, Corticosterone, and Catecholamines in the Rat

    Get PDF
    Total body irradiation (TBI) or partial body irradiation is a distinct risk of accidental, wartime, or terrorist events. Total body irradiation is also used as conditioning therapy before hematopoietic stem cell transplantation. This therapy can result in injury to multiple tissues and might result in death as a result of multiorgan failure. The hypothalamic–pituitary–adrenal (HPA) axis could play a causative role in those injuries, in addition to being activated under conditions of stress. In a rat model of TBI, we have established that radiation nephropathy is a significant lethal complication, which is caused by hypertension and uremia. The current study assessed HPA axis function in rats undergoing TBI. Using a head-shielded model of TBI, we found an enhanced response to corticotropin-releasing hormone (CRH) in vitro in pituitaries from irradiated compared with nonirradiated rats at both 8 and 70 days after 10-Gy single fraction TBI. At 70, but not 8 days, plasma adrenocorticotrophic hormone (ACTH) and corticosterone levels were increased significantly in irradiated compared with nonirradiated rats. Plasma aldosterone was not affected by TBI at either time point, whereas plasma renin activity was decreased in irradiated rats at 8 days. Basal and stimulated adrenal steroid synthesis in vitro was not affected by TBI. In addition, plasma epinephrine was decreased at 70 days after TBI. The hypothalamic expression of CRH messenger RNA (mRNA) and hippocampal expression of glucocorticoid receptor mRNA were unchanged by irradiation. We conclude that the hypertension of radiation nephropathy is not aldosterone or catecholamine-dependent but that there is an abscopal activation of the HPA axis after 10 Gy TBI. This activation was attributable at least partially to enhanced pituitary ACTH production

    Parametric Evolution for a Deformed Cavity

    Full text link
    We consider a classically chaotic system that is described by a Hamiltonian H(Q,P;x), where (Q,P) describes a particle moving inside a cavity, and x controls a deformation of the boundary. The quantum-eigenstates of the system are |n(x)>. We describe how the parametric kernel P(n|m) = , also known as the local density of states, evolves as a function of x-x0. We illuminate the non-unitary nature of this parametric evolution, the emergence of non-perturbative features, the final non-universal saturation, and the limitations of random-wave considerations. The parametric evolution is demonstrated numerically for two distinct representative deformation processes.Comment: 13 pages, 8 figures, improved introduction, to be published in Phys. Rev.

    Internal Vertebral Morphology of Bony Fishes Matches the Mechanical Demands of Different Environments

    Get PDF
    Fishes have repeatedly evolved characteristic body shapes depending on how close they live to the substrate. Pelagic fishes live in open water and typically have narrow, streamlined body shapes; benthic and demersal fishes live close to the substrate; and demersal fishes often have deeper bodies. These shape differences are often associated with behavioral differences: pelagic fishes swim nearly constantly, demersal fishes tend to maneuver near the substrate, and benthic fishes often lie in wait on the substrate. We hypothesized that these morphological and behavioral differences would be reflected in the mechanical properties of the body, and specifically in vertebral column stiffness, because it is an attachment point for the locomotor musculature and a central axis for body bending. The vertebrae of bony fishes are composed of two cones connected by a foramen, which is filled by the notochord. Since the notochord is more flexible than bony vertebral centra, we predicted that pelagic fishes would have narrower foramina or shallower cones, leading to less notochordal material and a stiffer vertebral column which might support continuous swimming. In contrast, we predicted that benthic and demersal fishes would have more notochordal material, making the vertebral column more flexible for diverse behaviors in these species. We therefore examined vertebral morphology in 79 species using micro-computed tomography scans. Six vertebral features were measured including notochordal foramen diameter, centrum body length, and the cone angles and diameters for the anterior and posterior vertebral cones, along with body fineness. Using phylogenetic generalized least squares analyses, we found that benthic and pelagic species differed significantly, with larger foramina, shorter centra, and larger cones in benthic species. Thus, morphological differences in the internal shape of the vertebrae of fishes are consistent with a stiffer vertebral column in pelagic fishes and with a more flexible vertebral column in benthic species

    Deformations and dilations of chaotic billiards, dissipation rate, and quasi-orthogonality of the boundary wavefunctions

    Full text link
    We consider chaotic billiards in d dimensions, and study the matrix elements M_{nm} corresponding to general deformations of the boundary. We analyze the dependence of |M_{nm}|^2 on \omega = (E_n-E_m)/\hbar using semiclassical considerations. This relates to an estimate of the energy dissipation rate when the deformation is periodic at frequency \omega. We show that for dilations and translations of the boundary, |M_{nm}|^2 vanishes like \omega^4 as \omega -> 0, for rotations like \omega^2, whereas for generic deformations it goes to a constant. Such special cases lead to quasi-orthogonality of the eigenstates on the boundary.Comment: 4 pages, 3 figure

    A fully 3-dimensional thermal model of a comet nucleus

    Get PDF
    A 3-D numerical model of comet nuclei is presented. An implicit numerical scheme was developed for the thermal evolution of a spherical nucleus composed of a mixture of ice and dust. The model was tested against analytical solutions, simplified numerical solutions, and 1-D thermal evolution codes. The 3-D code was applied to comet 67P/Churyumov-Gerasimenko; surface temperature maps and the internal thermal structure was obtained as function of depth, longitude and hour angle. The effect of the spin axis tilt on the surface temperature distribution was studied in detail. It was found that for small tilt angles, relatively low temperatures may prevail on near-pole areas, despite lateral heat conduction. A high-resolution run for a comet model of 67P/Churyumov-Gerasimenko with low tilt angle, allowing for crystallization of amorphous ice, showed that the amorphous/crystalline ice boundary varies significantly with depth as a function of cometary latitude.Comment: 19 pages, 10 figure

    A parametric deformable model to fit unstructured 3D data

    Get PDF
    International audienceIn many computer vision and image understanding problems, it is important to find a smooth surface that fits a set of given unstructured 3D data. Although approaches based on general deformable models give satisfactory results, in particular a local description of the surface, they involve large linear systems to solve when dealing with high resolution 3D images. The advantage of parametric deformable templates like superquadrics is their small number of parameters to describe a shape. However, the set of shapes described by superquadrics is too limited to approximate precisely complex surfaces. This is why hybrid models have been introduced to refine the initial approximation. This article introduces a deformable superquadric model based on a superquadric fit followed by a free-form deformation (FFD) to fit unstructured 3D points. At the expense of a reasonable number of additional parameters, free-form deformations provide a much closer fit and a volumetric deformation field. We first present the mathematical and algorithmic details of the method. Then, since we are mainly concerned with applications for medical images, we present a medical application consisting in the reconstruction of the left ventricle of the heart from a number of various 3D cardiac images. The extension of the method to track anatomical structures in spatio-temporal images (4D data) is presented in a companion article

    Surface reconstruction using active contour models

    Get PDF
    Variational methods have been frequently used for surface reconstruction and contour extraction (snakes). We present a surface reconstruction method where we assume the surface composed of two regions of different types of smoothness. One region of the surface models a "lake" (constant height region with uphill borders). It is surrounded by the other background region which is reconstructed using classic surface regularization. The boundary between the two regions, represented by a closed curve is determined with the help of an active contour model. Then the surface is reconstructed by minimizing the energy terms in each region. Minimizing a global energy defined on the couple of unknowns - boundary curve and surface - permits to introduce other forces on the curve. The surface reconstruction and contour extraction tasks are then made together. We have applied this model for segmenting a synthetic Digital Terrain Model (DTM) image which represents a noisy mountain and lake

    Spectral Irradiance Calibration in the Infrared 11: Comparison of (alpha) Boo and 1 Ceres with a Laboratory Standard

    Get PDF
    Infrared spectra of two celestial objects frequently used as flux standards are calibrated against an absolute laboratory flux standard at a spectral resolving power of 100 to 200. The spectrum of the K1.5III star, alpha Boo, is measured from 3 microns to 30 microns and that of the C-type asteroid, 1 Ceres, from 5 microns to 30 microns. While these 'standard' spectra do not have the apparent precision of those based on calculated models, they do not require the assumptions involved in theoretical models of stars and asteroids. Specifically they provide a model-independent means of calibrating celestial flux in the spectral range from 12 microns to 30 microns where accurate absolute photometry is not available. The agreement found between the spectral shapes of alpha Boo and Ceres based on laboratory standards, and those based on observed ratios to alpha CMa (Sirius) and alpha Lyr (Vega), flux calibrated by theoretical modeling of these hot stars strengthens our confidence in the applicability of the stellar models as primary irradiance standards

    SCAR is a primary regulator of Arp2/3-dependent morphological events in Drosophila

    Get PDF
    The Arp2/3 complex and its activators, Scar/WAVE and Wiskott-Aldrich Syndrome protein (WASp), promote actin polymerization in vitro and have been proposed to influence cell shape and motility in vivo. We demonstrate that the Drosophila Scar homologue, SCAR, localizes to actin-rich structures and is required for normal cell morphology in multiple cell types throughout development. In particular, SCAR function is essential for cytoplasmic organization in the blastoderm, axon development in the central nervous system, egg chamber structure during oogenesis, and adult eye morphology. Highly similar developmental requirements are found for subunits of the Arp2/3 complex. In the blastoderm, SCAR and Arp2/3 mutations result in a reduction in the amount of cortical filamentous actin and the disruption of dynamically regulated actin structures. Remarkably, the single Drosophila WASp homologue, Wasp, is largely dispensable for these numerous Arp2/3-dependent functions, whereas SCAR does not contribute to cell fate decisions in which Wasp and Arp2/3 play an essential role. These results identify SCAR as a major component of Arp2/3-dependent cell morphology during Drosophila development and demonstrate that the Arp2/3 complex can govern distinct cell biological events in response to SCAR and Wasp regulation
    • …
    corecore