107 research outputs found
On-line optimization of glutamate production based on balanced metabolic control by RQ
In glutamate fermentations by Corynebacterium glutamicum, higher glutamate concentration could be achieved by constantly controlling dissolved oxygen concentration (DO) at a lower level; however, by-product lactate also severely accumulated. The results of analyzing activities changes of the two key enzymes, glutamate and lactate dehydrogenases involved with the fermentation, and the entire metabolic network flux analysis showed that the lactate overproduction was because the metabolic flux in TCA cycle was too low to balance the glucose glycolysis rate. As a result, the respiratory quotient (RQ) adaptive control based “balanced metabolic control” (BMC) strategy was proposed and used to regulate the TCA metabolic flux rate at an appropriate level to achieve the metabolic balance among glycolysis, glutamate synthesis, and TCA metabolic flux. Compared with the best results of various DO constant controls, the BMC strategy increased the maximal glutamate concentration by about 15% and almost completely repressed the lactate accumulation with competitively high glutamate productivity
Analysis of optimal phenotypic space using elementary modes as applied to Corynebacterium glutamicum
BACKGROUND: Quantification of the metabolic network of an organism offers insights into possible ways of developing mutant strain for better productivity of an extracellular metabolite. The first step in this quantification is the enumeration of stoichiometries of all reactions occurring in a metabolic network. The structural details of the network in combination with experimentally observed accumulation rates of external metabolites can yield flux distribution at steady state. One such methodology for quantification is the use of elementary modes, which are minimal set of enzymes connecting external metabolites. Here, we have used a linear objective function subject to elementary modes as constraint to determine the fluxes in the metabolic network of Corynebacterium glutamicum. The feasible phenotypic space was evaluated at various combinations of oxygen and ammonia uptake rates. RESULTS: Quantification of the fluxes of the elementary modes in the metabolism of C. glutamicum was formulated as linear programming. The analysis demonstrated that the solution was dependent on the criteria of objective function when less than four accumulation rates of the external metabolites were considered. The analysis yielded feasible ranges of fluxes of elementary modes that satisfy the experimental accumulation rates. In C. glutamicum, the elementary modes relating to biomass synthesis through glycolysis and TCA cycle were predominantly operational in the initial growth phase. At a later time, the elementary modes contributing to lysine synthesis became active. The oxygen and ammonia uptake rates were shown to be bounded in the phenotypic space due to the stoichiometric constraint of the elementary modes. CONCLUSION: We have demonstrated the use of elementary modes and the linear programming to quantify a metabolic network. We have used the methodology to quantify the network of C. glutamicum, which evaluates the set of operational elementary modes at different phases of fermentation. The methodology was also used to determine the feasible solution space for a given set of substrate uptake rates under specific optimization criteria. Such an approach can be used to determine the optimality of the accumulation rates of any metabolite in a given network
Identification and application of a different glucose uptake system that functions as an alternative to the phosphotransferase system in Corynebacterium glutamicum
Corynebacterium glutamicum uses the phosphoenolpyruvate-dependent sugar phosphotransferase system (PTS) to uptake and phosphorylate glucose; no other route has yet been identified. Disruption of the ptsH gene in wild-type C. glutamicum resulted, as expected, in a phenotype exhibiting little growth on any of the PTS sugars: glucose, fructose, and sucrose. However, a suppressor mutant that grew on glucose but not on the other two sugars was spontaneously isolated from the PTS-negative strain WT Delta ptsH. The suppressor strain SPH2, unlike the wild-type strain, exhibited a phenotype of resistance to 2-deoxyglucose which is known to be a toxic substrate for the glucose-PTS of this microbe, suggesting that strain SPH2 utilizes glucose via a different system involving a permease and native glucokinases. Analysis of the C. glutamicum genome sequence using Escherichia coli galactose permease, which can transport glucose, led to the identification of two candidate genes, iolT1 and iolT2, both of which have been reported as myo-inositol transporters. When cultured on glucose medium supplemented with myo-inositol, strain WT Delta ptsH was able to consume glucose, suggesting that glucose uptake was mediated by one or more myo-inositol-induced transporters. Overexpression of iolT1 alone and that of iolT2 alone under the gapA promoter in strain WT Delta ptsH rendered the strain capable of growing on glucose, proving that each transporter played a role in glucose uptake. Disruption of iolT1 in strain SPH2 abolished growth on glucose, whereas disruption of iolT2 did not, revealing that iolT1 was responsible for glucose uptake in strain SPH2. Sequence analysis of the iol gene cluster and its surrounding region identified a single-base deletion in the putative transcriptional regulator gene Cgl0157 of strain SPH2. Introduction of the frameshift mutation allowed strain WT Delta ptsH to grow on glucose, and further deletion of iolT1 abolished the growth again, indicating that inactivation of Cgl0157 under a PTS-negative background can be a means by which to express the iolT1-specified glucose uptake bypass instead of the native PTS. When this strategy was applied to a defined lysine producer, the engineered strain displayed increased lysine production from glucose.ArticleAPPLIED MICROBIOLOGY AND BIOTECHNOLOGY. 90(4):1443-1451 (2011)journal articl
Transcriptome and Proteome Exploration to Model Translation Efficiency and Protein Stability in Lactococcus lactis
This genome-scale study analysed the various parameters influencing protein levels in cells. To achieve this goal, the model bacterium Lactococcus lactis was grown at steady state in continuous cultures at different growth rates, and proteomic and transcriptomic data were thoroughly compared. Ratios of mRNA to protein were highly variable among proteins but also, for a given gene, between the different growth conditions. The modeling of cellular processes combined with a data fitting modeling approach allowed both translation efficiencies and degradation rates to be estimated for each protein in each growth condition. Estimated translational efficiencies and degradation rates strongly differed between proteins and were tested for their biological significance through statistical correlations with relevant parameters such as codon or amino acid bias. These efficiencies and degradation rates were not constant in all growth conditions and were inversely proportional to the growth rate, indicating a more efficient translation at low growth rate but an antagonistic higher rate of protein degradation. Estimated protein median half-lives ranged from 23 to 224 min, underlying the importance of protein degradation notably at low growth rates. The regulation of intracellular protein level was analysed through regulatory coefficient calculations, revealing a complex control depending on protein and growth conditions. The modeling approach enabled translational efficiencies and protein degradation rates to be estimated, two biological parameters extremely difficult to determine experimentally and generally lacking in bacteria. This method is generic and can now be extended to other environments and/or other micro-organisms
A Functional Genomics Approach to Establish the Complement of Carbohydrate Transporters in Streptococcus pneumoniae
The aerotolerant anaerobe Streptococcus pneumoniae is part of the normal nasopharyngeal microbiota of humans and one of the most important invasive pathogens. A genomic survey allowed establishing the occurrence of twenty-one phosphotransferase systems, seven carbohydrate uptake ABC transporters, one sodium∶solute symporter and a permease, underlining an exceptionally high capacity for uptake of carbohydrate substrates. Despite high genomic variability, combined phenotypic and genomic analysis of twenty sequenced strains did assign the substrate specificity only to two uptake systems. Systematic analysis of mutants for most carbohydrate transporters enabled us to assign a phenotype and substrate specificity to twenty-three transport systems. For five putative transporters for galactose, pentoses, ribonucleosides and sulphated glycans activity was inferred, but not experimentally confirmed and only one transport system remains with an unknown substrate and lack of any functional annotation. Using a metabolic approach, 80% of the thirty-two fermentable carbon substrates were assigned to the corresponding transporter. The complexity and robustness of sugar uptake is underlined by the finding that many transporters have multiple substrates, and many sugars are transported by more than one system. The present work permits to draw a functional map of the complete arsenal of carbohydrate utilisation proteins of pneumococci, allows re-annotation of genomic data and might serve as a reference for related species. These data provide tools for specific investigation of the roles of the different carbon substrates on pneumococcal physiology in the host during carriage and invasive infection
Transcriptional, translocational and metabolic regulation of glycolysis in Lactococcus lactis subsp. cremoris MG 1363 grown in continuous acidic cultures
International audienc
Glutamate Biosynthesis in Lactococcus lactis subsp. lactis NCDO 2118
Unlike other lactic acid bacteria, Lactococcus lactis subsp. lactis NCDO 2118 was able to grow in a medium lacking glutamate and the amino acids of the glutamate family. Growth in such a medium proceeded after a lag phase of about 2 days and with a reduced growth rate (0.11 h(−1)) compared to that in the reference medium containing glutamate (0.16 h(−1)). The enzymatic studies showed that a phosphoenolpyruvate carboxylase activity was present, while the malic enzyme and the enzymes of the glyoxylic shunt were not detected. As in most anaerobic bacteria, no α-ketoglutarate dehydrogenase activity could be detected, and the citric acid cycle was restricted to a reductive pathway leading to succinate formation and an oxidative branch enabling the synthesis of α-ketoglutarate. The metabolic bottleneck responsible for the limited growth rate was located in this latter pathway. As regards the synthesis of glutamate from α-ketoglutarate, no glutamate dehydrogenase was detected. While the glutamate synthase-glutamine synthetase system was detected at a low level, high transaminase activity was measured. The conversion of α-ketoglutarate to glutamate by the transaminase, the reverse of the normal physiological direction, operated with different amino acids as nitrogen donor. All of the enzymes assayed were shown to be constitutive
Transcriptome analysis of the progressive adaptation of Lactococcus lactis to carbon starvation
International audienc
- …